Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A luminosity distribution for kilonovae based on short gamma-ray burst afterglows
Show others and affiliations
Number of Authors: 112019 (English)In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 486, no 1, p. 672-690Article in journal (Refereed) Published
Abstract [en]

The combined detection of a gravitational-wave signal, kilonova, and short gamma-ray burst (sGRB) from GW170817 marked a scientific breakthrough in the field of multimessenger astronomy. But even before GW170817, there have been a number of sGRBs with possible associated kilonova detections. In this work, we re-examine these ` historical' sGRB afterglows with a combination of state-of-the-art afterglow and kilonova models. This allows us to include optical/near-infrared synchrotron emission produced by the sGRB as well as ultraviolet/optical/near-infrared emission powered by the radioactive decay of r-process elements (i.e. the kilonova). Fitting the light curves, we derive the velocity and the mass distribution as well as the composition of the ejected material. The posteriors on kilonova parameters obtained from the fit were turned into distributions for the peak magnitude of the kilonova emission in different bands and the time at which this peak occurs. From the sGRB with an associated kilonova, we found that the peak magnitude in H bands falls in the range [-16.2, -13.1] (95 per cent of confidence) and occurs within 0.8-3.6 d after the sGRB prompt emission. In g band instead we obtain a peak magnitude in range [-16.8, -12.3] occurring within the first 18 h after the sGRB prompt. From the luminosity distributions of GW170817/AT2017gfo, kilonova candidates GRB130603B, GRB050709, and GRB060614 (with the possible inclusion of GRB150101B, GRB050724A, GRB061201, GRB080905A, GRB150424A, and GRB160821B) and the upper limits from all the other sGRBs not associated with any kilonova detection we obtain for the first time a kilonova luminosity distribution in different bands.

Place, publisher, year, edition, pages
2019. Vol. 486, no 1, p. 672-690
Keywords [en]
gravitational waves, nuclear reactions, nucleosynthesis, abundances, gamma-ray burst: general
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-172045DOI: 10.1093/mnras/stz891ISI: 000474894100052OAI: oai:DiVA.org:su-172045DiVA, id: diva2:1345122
Available from: 2019-08-23 Created: 2019-08-23 Last updated: 2019-08-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Rosswog, Stephan
By organisation
Department of AstronomyThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Monthly notices of the Royal Astronomical Society
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 36 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf