Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case
Show others and affiliations
Number of Authors: 572019 (English)In: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, no 7, article id 047Article in journal (Refereed) Published
Abstract [en]

The PTOLEMY project aims to develop a scalable design for a Cosmic Neutrino Background (CNB) detector, the first of its kind and the only one conceived that can look directly at the image of the Universe encoded in neutrino background produced in the first second after the Big Bang. The scope of the work for the next three years is to complete the conceptual design of this detector and to validate with direct measurements that the non-neutrino backgrounds are below the expected cosmological signal. In this paper we discuss in details the theoretical aspects of the experiment and its physics goals. In particular, we mainly address three issues. First we discuss the sensitivity of PTOLEMY to the standard neutrino mass scale. We then study the perspectives of the experiment to detect the CNB via neutrino capture on tritium as a function of the neutrino mass scale and the energy resolution of the apparatus. Finally, we consider an extra sterile neutrino with mass in the eV range, coupled to the active states via oscillations, which has been advocated in view of neutrino oscillation anomalies. This extra state would contribute to the tritium decay spectrum, and its properties, mass and mixing angle, could be studied by analyzing the features in the beta decay electron spectrum.

Place, publisher, year, edition, pages
2019. no 7, article id 047
Keywords [en]
cosmological neutrinos, neutrino detectors, particle physics - cosmology connection, physics of the early universe
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-171776DOI: 10.1088/1475-7516/2019/07/047ISI: 000478735300006OAI: oai:DiVA.org:su-171776DiVA, id: diva2:1346279
Available from: 2019-08-27 Created: 2019-08-27 Last updated: 2019-08-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textarXiv:1902.05508

Search in DiVA

By author/editor
Conrad, Jande Salas, Pablo FernándezFerella, AlfredoGudmundsson, Jón E.
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Journal of Cosmology and Astroparticle Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf