Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Combined Effects of Environmental Drivers on Marine Trophic Groups - A Systematic Model Comparison
Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre. University of Helsinki, Finland.
Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre. Friedrich Schiller University Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany.
Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre. University of Helsinki, Finland.
Number of Authors: 32019 (English)In: Frontiers in Marine Science, E-ISSN 2296-7745, Vol. 6, article id 492Article in journal (Refereed) Published
Abstract [en]

The responses of food webs to simultaneous changes in several environmental drivers are still poorly understood. As a contribution to filling this knowledge gap, we investigated the major pathways through which two interlinked environmental drivers, eutrophication and climate, affect the biomass and community composition of fish and benthic macrofauna. For this aim, we conducted a systematic sensitivity analysis using two models simulating the dynamics of benthic and pelagic food webs in the Baltic Sea. We varied environmental forcing representing primary productivity, oxygen conditions and water temperature in all possible combinations, over a range representative of expected changes during the 21st century. Both models indicated that increased primary productivity leads to biomass increase in all parts of the system, however, counteracted by expanding hypoxia. Effects of temperature were complex, but generally small compared to the other drivers. Similarities across models give confidence in the main results, but we also found differences due to different representations of the food web in the two models. While both models predicted a shift in benthic community composition toward an increased abundance of Limecola (Macoma) balthica with increasing productivity, the effects on deposit-feeding and predatory benthic groups depended on the presence of fish predators in the model. The model results indicate that nutrient loads are a stronger driver of change for ecosystem functions in the Baltic Sea than climate change, but it is important to consider the combined effects of these drivers for proper management of the marine environment.

Place, publisher, year, edition, pages
2019. Vol. 6, article id 492
Keywords [en]
interacting stressors, benthic fauna, fish, Baltic Sea, sensitivity analysis, Ecopath with Ecosim, numerical model
National Category
Earth and Related Environmental Sciences Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-171959DOI: 10.3389/fmars.2019.00492ISI: 000478733600001OAI: oai:DiVA.org:su-171959DiVA, id: diva2:1348496
Available from: 2019-09-04 Created: 2019-09-04 Last updated: 2019-09-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Ehrnsten, EvaBauer, BarbaraGustafsson, Bo G.
By organisation
Stockholm University Baltic Sea Centre
In the same journal
Frontiers in Marine Science
Earth and Related Environmental SciencesBiological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf