Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Phase transition preceding magnetic long-range order in the double perovskite Ba2NaOsO6
Show others and affiliations
Number of Authors: 72019 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 100, no 4, article id 041108Article in journal (Refereed) Published
Abstract [en]

Recent theoretical studies [G. Chen et al., Phys. Rev. B 82, 174440 (2010); H. Ishizuka et al., Phys. Rev. B 90, 184422 (2014)] for the magnetic Mott insulator Ba2NaOsO6 have proposed a low-temperature order parameter that breaks lattice rotational symmetry without breaking time reversal symmetry, leading to a nematic phase just above the magnetic ordering temperature. We present high-resolution calorimetric and magnetization data of the same Ba2NaOsO6 single crystal and show evidence for a weakly field-dependent phase transition occurring at a temperature of T-s approximate to 9.5 K, above the magnetic ordering temperature of T-c approximate to 7.5 K. This transition appears as a broadened step in the low-field temperature dependence of the specific heat. The evolution of the phase boundary with applied magnetic field suggests that this phase coincides with the phase of broken local point symmetry seen in NMR experiments at high fields [L. Lu et al., Nat. Commun. 8, 14407 (2017)]. Furthermore, the magnetic field dependence of the specific heat provides clear indications for magnetic correlations persisting at temperatures between T-c and T-s where long-range magnetic order is absent, giving support for the existence of the proposed nematic phase.

Place, publisher, year, edition, pages
2019. Vol. 100, no 4, article id 041108
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-171734DOI: 10.1103/PhysRevB.100.041108ISI: 000475500000001OAI: oai:DiVA.org:su-171734DiVA, id: diva2:1349966
Available from: 2019-09-10 Created: 2019-09-10 Last updated: 2019-09-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Rydh, Andreas
By organisation
Department of Physics
In the same journal
Physical Review B
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf