Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Superconductivity and charge-carrier localization in ultrathin La1.85Sr0.15CuO4/La2CuO4 bilayers
University of Fribourg, Switzerland.
University of Fribourg, Switzerland.
University of Fribourg, Switzerland.
University of Fribourg, Switzerland.
Show others and affiliations
2017 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 95, no 21, article id 214506Article in journal (Refereed) Published
Abstract [en]

La1.85Sr0.15CuO4/La2CuO4 (LSCO15/LCO) bilayers with a precisely controlled thickness of N unit cells (UCs) of the former and M UCs of the latter ([LSCO15_N/LCO_M]) were grown on (001)-oriented SrLaAlO4 (SLAO) substrates with pulsed laser deposition (PLD). X-ray diffraction and reciprocal space map (RSM) studies confirmed the epitaxial growth of the bilayers and showed that a [LSCO15_2/LCO_2] bilayer is fully strained, whereas a [LSCO15_2/LCO_7] bilayer is already partially relaxed. The in situ monitoring of the growth with reflection high energy electron diffraction (RHEED) revealed that the gas environment during deposition has a surprisingly strong effect on the growth mode and thus on the amount of disorder in the first UC of LSCO15 (or the first two monolayers of LSCO15 containing one CuO2 plane each). For samples grown in pure N2O gas (growth type B), the first LSCO15 UC next to the SLAO substrate is strongly disordered. This disorder is strongly reduced if the growth is performed in a mixture of N2O and O2 gas (growth type A). Electric transport measurements confirmed that the first UC of LSCO15 next to the SLAO substrate is highly resistive and shows no sign of superconductivity for growth type B, whereas it is superconducting for growth type A. Furthermore, we found, rather surprisingly, that the conductivity of the LSCO15 UC next to the LCO capping layer strongly depends on the thickness of the latter. A LCO capping layer with 7 UCs leads to a strong localization of the charge carriers in the adjacent LSCO15 UC and suppresses superconductivity. The magnetotransport data suggest a similarity with the case of weakly hole doped LSCO single crystals that are in a so-called ‘cluster-spin-glass state.’ We discussed several mechanisms that could lead to such a localization of holes that are embedded in a short-range ordered antiferromagnetic background for the case of a thick LCO capping layer with M=7 but not for a thin one with M=2.

Place, publisher, year, edition, pages
2017. Vol. 95, no 21, article id 214506
National Category
Condensed Matter Physics
Research subject
Physics
Identifiers
URN: urn:nbn:se:su:diva-172854DOI: 10.1103/PhysRevB.95.214506OAI: oai:DiVA.org:su-172854DiVA, id: diva2:1350246
Available from: 2019-09-11 Created: 2019-09-11 Last updated: 2019-09-11Bibliographically approved
In thesis
1. Pulsed laser deposition and nanofabrication of mesoscopic devices based on cuprates and manganites
Open this publication in new window or tab >>Pulsed laser deposition and nanofabrication of mesoscopic devices based on cuprates and manganites
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis explores the growth, the nano-fabrication and the study of the magneto-transport properties of Superconductor/Ferromagnet/Superconductor (SFS) structures from complex oxides such as the high Tc superconducting cuprate YBa2Cu3O7 (YBCO) and the ferromagnetic manganites La2/3Ca1/3MnO3 and La2/3Sr1/3MnO3 (LCMO and LSMO), deposited with the pulsed laser deposition (PLD) technique.The present work has been possible thanks to the collaboration between the “Magnetism and Superconductivity” Group at the University of Fribourg, in Switzerland, and the “Experimentell Kondenserade Materiens Fysik” Group at Stockholm University, in Sweden.

Earlier, the two research groups in Fribourg and Stockholm had studied SFS structures from YBCO/LaMnO3/YBCO multilayers with 20 nm thick ferromagnetic and insulating LaMnO3 barriers, and obtained signs of an unconventional spin-triplet current across these structures. This finding motivated the present thesis work with a focus on two main aspects.

Firstly, to explore other candidate materials suitable as barriers and optimise their growth conditions as to maintain a large ferromagnetic moment and thus a high spin polarisation of the charge carriers. Secondly, to study what happens when the thickness of the ferromagnetic and insulating LaMnO3 barrier is reduced well below 20 nm to enable larger supercurrents.

It has been shown for a series of YBCO/LCMO multilayers that the ferromagnetic moment of LCMO depends critically on the PLD growth conditions as well as on the thickness and even structural details of the YBCO layer on which they are grown. Furthermore, a protocol has been established to grow heterostructures with strongly ferromagnetic manganite layers embedded in thick YBCO layers by optimising the PLD growth conditions and by substituting the bottom YBCO layer with a Co and Ca substituted version of YBCO that has a tetragonal structure (tYBCO) instead of the orthorhombic one of plain YBCO.

Devices suitable for perpendicular magneto-transport measurements have been nano-fabricated from YBCO/manganite/YBCO multilayers with ~10 nm thick LCMO and LSMO layers as the F barriers. While no clear indications of a spin-triplet component of the superconducting order parameter have been obtained yet, a negative and hysteretic magneto-resistance has been observed that is indicative of a strong ferromagnetic order in the thin manganite barrier. The latter suggests a potential memory functionality of such structures that could be exploited in future spintronic memory devices.

Moreover, devices have been fabricated on SFS structures with a reduced thickness of the LaMnO3 barrier of 10 nm and 5 nm. These samples were grown prior to the beginning of this PhD work using non optimised growth conditions, and it was found that the ferromagnetic properties of these LaMnO3 barriers are strongly deteriorated. It remains to be seen whether the ferromagnetic order of such thin LaMnO3 layers can be also recovered by using the optimised growth conditions as for LSMO and LCMO.

Place, publisher, year, edition, pages
Stockholm: Department of Physics, Stockholm University, 2019. p. 109
Keywords
cuprates, manganites, pulsed laser deposition, nano-fabrication, heterostructures
National Category
Condensed Matter Physics
Research subject
Physics
Identifiers
urn:nbn:se:su:diva-172861 (URN)978-91-7797-833-6 (ISBN)978-91-7797-834-3 (ISBN)
Public defence
2019-10-28, FP41, hus 1, AlbaNova universitetscentrum, Roslagstullsbacken 21, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Submitted.

Available from: 2019-10-03 Created: 2019-09-11 Last updated: 2019-09-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
de Andrés Prada, Roberto
In the same journal
Physical Review B
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf