Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
X-Ray and Gamma-Ray Emission from Core-collapse Supernovae: Comparison of Three-dimensional Neutrino-driven Explosions with SN 1987A
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Show others and affiliations
Number of Authors: 102019 (English)In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 882, no 1, article id 22Article in journal (Refereed) Published
Abstract [en]

During the first few hundred days after the explosion, core-collapse supernovae (SNe) emit down-scattered X-rays and gamma-rays originating from radioactive line emissions, primarily from the Ni-56 -> Co-56 -> Fe-56 chain. We use supernova (SN) models based on three-dimensional neutrino-driven explosion simulations of single stars and mergers to compute this emission and compare the predictions with observations of SN 1987A. A number of models are clearly excluded, showing that high-energy emission is a powerful way of discriminating between models. The best models are almost consistent with the observations, but differences that cannot be matched by a suitable choice of viewing angle are evident. Therefore, our self-consistent models suggest that neutrino-driven explosions are able to produce, in principle, sufficient mixing, although remaining discrepancies may require small changes to the progenitor structures. The soft X-ray cutoff is primarily determined by the metallicity of the progenitor envelope. The main effect of asymmetries is to vary the flux level by a factor of similar to 3. For the more asymmetric models, the shapes of the light curves also change. In addition to the models of SN 1987A, we investigate two models of SNe II-P and one model of a stripped-envelope SN IIb. The Type II-P models have observables similar to those of the models of SN 1987A, but the stripped-envelope SN model is significantly more luminous and evolves faster. Finally, we make simple predictions for future observations of nearby SNe.

Place, publisher, year, edition, pages
2019. Vol. 882, no 1, article id 22
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:su:diva-172969DOI: 10.3847/1538-4357/ab3395ISI: 000483094200004OAI: oai:DiVA.org:su-172969DiVA, id: diva2:1351653
Available from: 2019-09-16 Created: 2019-09-16 Last updated: 2019-09-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Alp, DennisFransson, Claes
By organisation
Department of AstronomyThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Astrophysical Journal
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf