CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt879",{id:"formSmash:upper:j_idt879",widgetVar:"widget_formSmash_upper_j_idt879",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt880_j_idt884",{id:"formSmash:upper:j_idt880:j_idt884",widgetVar:"widget_formSmash_upper_j_idt880_j_idt884",target:"formSmash:upper:j_idt880:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Competing first passage percolation on random graphs with finite variance degreesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
Number of Authors: 32019 (English)In: Random structures & algorithms (Print), ISSN 1042-9832, E-ISSN 1098-2418, Vol. 55, no 3, p. 545-559Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2019. Vol. 55, no 3, p. 545-559
##### Keywords [en]

coexistence, competing growth, configuration model, continuous-time branching process, first passage percolation, random graphs
##### National Category

Computer and Information Sciences Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-172957DOI: 10.1002/rsa.20846ISI: 000482128300002OAI: oai:DiVA.org:su-172957DiVA, id: diva2:1351733
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1223",{id:"formSmash:j_idt1223",widgetVar:"widget_formSmash_j_idt1223",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1229",{id:"formSmash:j_idt1229",widgetVar:"widget_formSmash_j_idt1229",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1235",{id:"formSmash:j_idt1235",widgetVar:"widget_formSmash_j_idt1235",multiple:true}); Available from: 2019-09-16 Created: 2019-09-16 Last updated: 2019-09-16Bibliographically approved

We study the growth of two competing infection types on graphs generated by the configuration model with a given degree sequence. Starting from two vertices chosen uniformly at random, the infection types spread via the edges in the graph in that an uninfected vertex becomes type 1 (2) infected at rate lambda(1) (lambda(2)) times the number of nearest neighbors of type 1 (2). Assuming (essentially) that the degree of a randomly chosen vertex has finite second moment, we show that if lambda(1) = lambda(2), then the fraction of vertices that are ultimately infected by type 1 converges to a continuous random variable V is an element of (0,1), as the number of vertices tends to infinity. Both infection types hence occupy a positive (random) fraction of the vertices. If lambda(1) not equal lambda(2), on the other hand, then the type with the larger intensity occupies all but a vanishing fraction of the vertices. Our results apply also to a uniformly chosen simple graph with the given degree sequence.

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt2089",{id:"formSmash:j_idt2089",widgetVar:"widget_formSmash_j_idt2089",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2178",{id:"formSmash:lower:j_idt2178",widgetVar:"widget_formSmash_lower_j_idt2178",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2181_j_idt2184",{id:"formSmash:lower:j_idt2181:j_idt2184",widgetVar:"widget_formSmash_lower_j_idt2181_j_idt2184",target:"formSmash:lower:j_idt2181:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});