Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Genetic basis and timing of a major mating system shift in Capsella
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. Stockholm University, Science for Life Laboratory (SciLifeLab).
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. Stockholm University, Science for Life Laboratory (SciLifeLab).ORCID iD: 0000-0002-7378-4673
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. Stockholm University, Science for Life Laboratory (SciLifeLab).
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. Stockholm University, Science for Life Laboratory (SciLifeLab).
Show others and affiliations
Number of Authors: 142019 (English)In: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 224, no 1, p. 505-517Article in journal (Refereed) Published
Abstract [en]

A crucial step in the transition from outcrossing to self-fertilization is the loss of genetic self-incompatibility (SI). In the Brassicaceae, SI involves the interaction of female and male specificity components, encoded by the genes SRK and SCR at the self-incompatibility locus (S-locus). Theory predicts that S-linked mutations, and especially dominant mutations in SCR, are likely to contribute to loss of SI. However, few studies have investigated the contribution of dominant mutations to loss of SI in wild plant species. Here, we investigate the genetic basis of loss of SI in the self-fertilizing crucifer species Capsella orientalis, by combining genetic mapping, long-read sequencing of complete S-haplotypes, gene expression analyses and controlled crosses. We show that loss of SI in C. orientalis occurred S-locus. We identify a fixed frameshift deletion in the male specificity gene SCR and confirm loss of male SI specificity. We further identify an S-linked small RNA that is predicted to cause dominance of self-compatibility. Our results agree with predictions on the contribution of dominant S-linked mutations to loss of SI, and thus provide new insights into the molecular basis of mating system transitions.

Place, publisher, year, edition, pages
2019. Vol. 224, no 1, p. 505-517
Keywords [en]
Capsella, dominance modifier, long-read sequencing, parallel evolution, plant mating system shift, self-compatibility, S-locus, small RNA
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-173013DOI: 10.1111/nph.16035ISI: 000479176400001PubMedID: 31254395OAI: oai:DiVA.org:su-173013DiVA, id: diva2:1358243
Available from: 2019-10-07 Created: 2019-10-07 Last updated: 2019-10-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Bachmann, Jörg A.Tedder, AndrewLaenen, BenjaminFracassetti, MarcoSteige, Kim A.Slotte, Tanja
By organisation
Department of Ecology, Environment and Plant SciencesScience for Life Laboratory (SciLifeLab)
In the same journal
New Phytologist
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf