Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hydrogen induced structure and property changes in Eu3Si4
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Show others and affiliations
Number of Authors: 102019 (English)In: Journal of Solid State Chemistry, ISSN 0022-4596, E-ISSN 1095-726X, Vol. 277, p. 37-45Article in journal (Refereed) Published
Abstract [en]

Hydrides Eu3Si4H2-X were obtained by exposing the Zintl phase Eu3Si4 to a hydrogen atmosphere at a pressure of 30 bar and temperatures from 25 to 300 degrees C. Structural analysis using powder X-ray diffraction (PXRD) data suggested that hydrogenations in a temperature range 25-200 degrees C afford a uniform hydride phase with an orthorhombic structure (Immm, a approximate to 4.40 angstrom, b approximate to 3.97 angstrom, c approximate to 19.8 angstrom), whereas at 300 degrees C mixtures of two orthorhombic phases with c approximate to 19.86 and approximate to 19.58 angstrom were obtained. The assignment of a composition Eu3Si4H2+x is based on first principles DFT calculations, which indicated a distinct crystallographic site for H in the Eu3Si4 structure. In this position, H atoms are coordinated in a tetrahedral fashion by Eu atoms. The resulting hydride Eu3Si4H2 is stable by -0.46 eV/H atom with respect to Eu3Si4 and gaseous H-2. Deviations between the lattice parameters of the DFT optimized Eu3Si4H2 structure and the ones extracted from PXRD patterns pointed to the presence of additional H in interstitials also involving Si atoms. Subsequent DFT modeling of compositions Eu3Si4H3 and Eu3Si4H4 showed considerably better agreement to the experimental unit cell volumes. It was then concluded that the hydrides of Eu3Si4 have a composition Eu3Si4H2+x (x < 2) and are disordered with respect to H in Si2Eu3 interstitials. Eu3Si4 is a ferromagnet with a Tc at about 120 K. Ferromagnetism is effectively quenched in Eu3Si4H2+x. The effective magnetic moment for both materials is 7.5 pg which is typical for compounds containing Eu2+ 4f(7) ions.

Place, publisher, year, edition, pages
2019. Vol. 277, p. 37-45
Keywords [en]
Zintl phases, Zintl phase hydrides, Rare earth metal silicides, Magnetic properties
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-173087DOI: 10.1016/j.jssc.2019.05.033ISI: 000481726300006OAI: oai:DiVA.org:su-173087DiVA, id: diva2:1359354
Available from: 2019-10-09 Created: 2019-10-09 Last updated: 2019-10-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Nedumkandathil, RejiHäussermann, Ulrich
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Journal of Solid State Chemistry
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 10 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf