Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Molecular evolution of thermogenic uncoupling protein 1 and implications for medical intervention of human disease
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.ORCID iD: 0000-0003-0319-3509
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Number of Authors: 32019 (English)In: Molecular Aspects of Medicine, ISSN 0098-2997, E-ISSN 1872-9452, Vol. 68, p. 6-17Article, review/survey (Refereed) Published
Abstract [en]

In eutherian mammals, brown adipose tissue (BAT) permits non-shivering thermogenesis (NST) through high metabolic rates catalyzed by the unique mitochondrial uncoupling protein 1 (UCP1). The tissue has recently gained remarkable attention due to its discovery in adult humans. Approaching BAT and UCP1 as therapeutic targets to combust surplus energy bares high potential to combat the epidemic of the metabolic syndrome that has precipitated in our society as a result of our modern lifestyles. Our understanding of the physiological and molecular control of BAT may benefit tremendously from consideration of its evolution that basically outlines the blueprint of how to construct a fat burning tissue. Here, we discuss the evolutionary history of UCP1 and BAT, from its origins and emergence to its downfall in several mammalian lineages. Additionally, we delineate the annotation of UCPs in vertebrates by analyzing genomic organization and summarize the phylogeny of UCP1 within the closest relatives of humans, the great apes. Outlining whether the molecular networks controlling thermogenesis in adipose tissue (commonly known as the browning potential) pre-dated the classical thermogenic function of BAT and UCP1, and whether the evolutionary inactivation of UCP1 enhanced compensatory thermogenic mechanisms, should be of major interest to those who aim to access adipose tissue thermogenesis in a biomedical context.

Place, publisher, year, edition, pages
2019. Vol. 68, p. 6-17
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-173002DOI: 10.1016/j.mam.2019.06.006ISI: 000482103700002PubMedID: 31238069OAI: oai:DiVA.org:su-173002DiVA, id: diva2:1360275
Available from: 2019-10-11 Created: 2019-10-11 Last updated: 2019-10-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Gaudry, Michael J.Keuper, MichaelaJastroch, Martin
By organisation
Department of Molecular Biosciences, The Wenner-Gren Institute
In the same journal
Molecular Aspects of Medicine
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf