Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tunable assembly of truncated nanocubes by evaporation-driven poor-solvent enrichment
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Number of Authors: 32019 (English)In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, article id 4228Article in journal (Refereed) Published
Abstract [en]

Self-assembly of nanocrystals is extensively used to generate superlattices with long-range translational order and atomic crystallographic orientation, i.e. mesocrystals, with emergent mesoscale properties, but the predictability and tunability of the assembly methods are poorly understood. Here, we report how mesocrystals produced by poor-solvent enrichment can be tuned by solvent composition, initial nanocrystal concentration, poor-solvent enrichment rate, and excess surfactant. The crystallographic coherence and mesoscopic order within the mesocrystal were characterized using techniques in real and reciprocal spaces, and superlattice growth was followed in real time by small-angle X-ray scattering. We show that formation of highly ordered superlattices is dominated by the evaporation-driven increase of the solvent polarity and particle concentration, and facilitated by excess surfactant. Poor-solvent enrichment is a versatile nanoparticle assembly method that offers a promising production route with high predictability to modulate and maximize the size and morphology of nanocrystal metamaterials.

Place, publisher, year, edition, pages
2019. Vol. 10, article id 4228
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-175083DOI: 10.1038/s41467-019-12237-yISI: 000486138600003PubMedID: 31530817OAI: oai:DiVA.org:su-175083DiVA, id: diva2:1364918
Available from: 2019-10-23 Created: 2019-10-23 Last updated: 2019-10-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Lyu, Zhong-PengKapuscinski, MartinBergström, Lennart
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Nature Communications
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf