Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mesoscale Transformation of Amorphous Calcium Carbonate to Porous Vaterite Microparticles with Morphology Control
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).ORCID iD: 0000-0002-8956-5897
Show others and affiliations
Number of Authors: 52019 (English)In: Crystal Growth & Design, ISSN 1528-7483, E-ISSN 1528-7505, Vol. 19, no 9, p. 5075-5087Article in journal (Refereed) Published
Abstract [en]

The morphology controlled synthesis of porous vaterite microparticles from amorphous calcium carbonate (ACC) nanoparticles via mesoscale transformation and self-assembly is presented. The morphology of vaterite microparticles ranging from ellipsoidal to spherical can be controlled by adjusting the amount of adipic acid (AA) additive during synthesis. Electron microscopy and electron diffraction reveal that the vaterite microparticles are formed by the oriented self-assembly of vaterite nanocrystals. The Brunauer-Emmett-Teller (BET) surface area of the vaterite microparticle varies between similar to 30 and similar to 80 m(2)/g. The coverage of AA on the surface of the ACC nanoparticle plays the pivotal role in the morphology controlled synthesis of vaterite microparticles. 6-Aminocaproic acid (6A), benzoic acid (BA), citric acid (CA), and poly(acrylic acid) (PAA) are also tested as additives and their effect on the morphology of vaterite microparticles is presented. Morphology control of functional materials can be beneficial for application where the morphology and porosity are critical, such as drug delivery. This work demonstrates a possible method to finely adjust the morphology of vaterite microparticles with the assistance of additives through mesoscale transformation and self-assembly using amorphous nanoparticles as precursors.

Place, publisher, year, edition, pages
2019. Vol. 19, no 9, p. 5075-5087
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-174953DOI: 10.1021/acs.cgd.9b00438ISI: 000484830800021OAI: oai:DiVA.org:su-174953DiVA, id: diva2:1365592
Available from: 2019-10-25 Created: 2019-10-25 Last updated: 2019-10-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Willhammar, TomSvensson Grape, ErikStrømme, Maria
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Crystal Growth & Design
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf