Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Redox-induced structural changes in the di-iron and di-manganese forms of Bacillus anthracis ribonucleotide reductase subunit NrdF suggest a mechanism for gating of radical access
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Uppsala University, Sweden.ORCID iD: 0000-0003-3686-3062
Show others and affiliations
Number of Authors: 72019 (English)In: Journal of Biological Inorganic Chemistry, ISSN 0949-8257, E-ISSN 1432-1327, Vol. 24, no 6, p. 849-861Article in journal (Refereed) Published
Abstract [en]

Class Ib ribonucleotide reductases (RNR) utilize a di-nuclear manganese or iron cofactor for reduction of superoxide or molecular oxygen, respectively. This generates a stable tyrosyl radical (Y center dot) in the R2 subunit (NrdF), which is further used for ribonucleotide reduction in the R1 subunit of RNR. Here, we report high-resolution crystal structures of Bacillus anthracis NrdF in the metal-free form (1.51 angstrom) and in complex with manganese (Mn-II/Mn-II, 1.30 angstrom). We also report three structures of the protein in complex with iron, either prepared anaerobically (Fe-II/Fe-II form, 1.32 angstrom), or prepared aerobically in the photo-reduced Fe-II/Fe-II form (1.63 angstrom) and with the partially oxidized metallo-cofactor (1.46 angstrom). The structures reveal significant conformational dynamics, likely to be associated with the generation, stabilization, and transfer of the radical to the R1 subunit. Based on observed redox-dependent structural changes, we propose that the passage for the superoxide, linking the FMN cofactor of NrdI and the metal site in NrdF, is closed upon metal oxidation, blocking access to the metal and radical sites. In addition, we describe the structural mechanics likely to be involved in this process.

Place, publisher, year, edition, pages
2019. Vol. 24, no 6, p. 849-861
Keywords [en]
Oxidoreductase, Metalloprotein, Carboxylate shift, X-ray crystallography, Ferritin superfamily
National Category
Biological Sciences Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-174950DOI: 10.1007/s00775-019-01703-zISI: 000487094500010PubMedID: 31410573OAI: oai:DiVA.org:su-174950DiVA, id: diva2:1365829
Available from: 2019-10-25 Created: 2019-10-25 Last updated: 2019-10-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Grāve, KristīneGriese, Julia J.Bennett, Matthew D.Högbom, Martin
By organisation
Department of Biochemistry and Biophysics
In the same journal
Journal of Biological Inorganic Chemistry
Biological SciencesChemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf