Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Diversity and evolution of chitin synthases in oomycetes (Straminipila: Oomycota)
Stockholm University, Faculty of Science, Department of Mathematics. Stockholm University, Science for Life Laboratory (SciLifeLab).ORCID iD: 0000-0001-5341-1733
Number of Authors: 32019 (English)In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 139, article id 106558Article in journal (Refereed) Published
Abstract [en]

The oomycetes are filamentous eukaryotic microorganisms, distinct from true fungi, many of which act as crop or fish pathogens that cause devastating losses in agriculture and aquaculture. Chitin is present in all true fungi, but it occurs in only small amounts in some Saprolegniomycetes and it is absent in Peronosporomycetes. However, the growth of several oomycetes is severely impacted by competitive chitin synthase (CHS) inhibitors. Here, we shed light on the diversity, evolution and function of oomycete CHS proteins. We show by phylogenetic analysis of 93 putative CHSs from 48 highly diverse oomycetes, including the early diverging Ewychasma dicksonii, that all available oomycete genomes contain at least one putative CHS gene. All gene products contain conserved CHS motifs essential for enzymatic activity and form two Peronosporomycete-specific and six Saprolegniale-specific clades. Proteins of all clades, except one, contain an N-terminal microtubule interacting and trafficking (MIT) domain as predicted by protein domain databases or manual analysis, which is supported by homology modelling and comparison of conserved structural features from sequence logos. We identified at least three groups of CHSs conserved among all oomycete lineages and used phylogenetic reconciliation analysis to infer the dynamic evolution of CHSs in oomycetes. The evolutionary aspects of CHS diversity in modern-day oomycetes are discussed. In addition, we observed hyphal tip rupture in Phytophthora infestans upon treatment with the CHS inhibitor nikkomycin Z. Combining data on phylogeny, gene expression, and response to CHS inhibitors, we propose the association of different CHS clades with certain developmental stages.

Place, publisher, year, edition, pages
2019. Vol. 139, article id 106558
Keywords [en]
Chitin synthase, Evolution, Growth inhibition, Microtubule interacting and trafficking (MIT) domain, Oomycete, Phylogeny
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-175032DOI: 10.1016/j.ympev.2019.106558ISI: 000485041900042PubMedID: 31288106OAI: oai:DiVA.org:su-175032DiVA, id: diva2:1366769
Available from: 2019-10-30 Created: 2019-10-30 Last updated: 2019-10-30Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Arvestad, Lars
By organisation
Department of MathematicsScience for Life Laboratory (SciLifeLab)
In the same journal
Molecular Phylogenetics and Evolution
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf