Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Century-scale temperature variability and onset of industrial-era warming in the Eastern Tibetan Plateau
Stockholm University, Faculty of Science, Department of Physical Geography.
Stockholm University, Faculty of Science, Department of Physical Geography.
Show others and affiliations
Number of Authors: 62019 (English)In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 53, no 7-8, p. 4569-4590Article in journal (Refereed) Published
Abstract [en]

To improve our understanding of climate variability in the Tibetan Plateau (TP) and its sensitivity to external forcings, recent temperature changes need to be placed in a long-term historical context. Here, we present two tree-ring based temperature reconstructions: a 1003-year (1000-2002 CE) annual temperature reconstruction for the northeastern TP (NETP) based on seven series and a 522-year (1489-2010 CE) summer (June-July-August) temperature reconstruction for the southeastern TP (SETP) based on 11 series. Our reconstructions show six centuries of generally warm NETP temperatures (1000-1586 CE), followed by a transition to cooler temperatures (1587-1887 CE for NETP and 1588-1930 CE for SETP). The transition from the Medieval Climate Anomaly to the Little Ice Age thus happened in the 1580s in NETP and SETP, which is about 150 years later than in larger-scale (e.g. Asia and the Northern Hemisphere) temperature reconstructions. We found that TP temperature variability, especially in SETP, was influenced by the Atlantic multi-decadal oscillation and that the twentieth century was the warmest on record in NETP and SETP. Our reconstructions and climate model simulations both show industrial-era warming trends, the onset of which happened earlier in NETP (1812 CE) compared to SETP (1887 CE) and other temperature reconstructions for Western China, East Asia, Asia, and the Northern Hemisphere. The early NETP onset of industrial-era warming can likely be explained by NETP's faster warming rate and by local feedback factors (i.e., ice-snow cover-albedo). Comparisons between climate model simulations and our reconstructions reveal that cooler TP temperatures from 1600 to 1800 CE might be related to land-use and land-cover change.

Place, publisher, year, edition, pages
2019. Vol. 53, no 7-8, p. 4569-4590
Keywords [en]
Anthropogenic effect, Atlantic multidecadal oscillation (AMO), Climate model simulation, Tibetan Plateau, Tree rings, Temperature variability, Millennium temperature
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-175847DOI: 10.1007/s00382-019-04807-zISI: 000489753900046OAI: oai:DiVA.org:su-175847DiVA, id: diva2:1369457
Available from: 2019-11-12 Created: 2019-11-12 Last updated: 2019-11-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Zhang, QiongZhang, QiangHudson, Amy
By organisation
Department of Physical Geography
In the same journal
Climate Dynamics
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf