Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Carbon use efficiency of mycorrhizal fungal mycelium increases during the growing season but decreases with forest age across a Pinus sylvestris chronosequence
Show others and affiliations
Number of Authors: 82019 (English)In: Journal of Ecology, ISSN 0022-0477, E-ISSN 1365-2745, Vol. 107, no 6, p. 2808-2822Article in journal (Refereed) Published
Abstract [en]

In boreal forest soils, mycelium of mycorrhizal fungi is pivotal for regulating soil carbon (C) cycling and storage. The carbon use efficiency (CUE), a key parameter in C cycling models, can inform on the partitioning of C between microbial biomass, and potential soil storage, and respiration. Here, we test the dependency of mycorrhizal mycelial CUE on stand age and seasonality in managed boreal forest stands. Based on mycelial production and respiration estimates, derived from sequentially incubated ingrowth mesh bags, we estimated CUE on an ecosystem scale during a seasonal cycle and across a chronosequence of eight, 12- to 158-year-old, managed Pinus sylvestris forest stands characterized by decreasing pH and nitrogen (N) availability with increasing age. Mycelial respiration was related to total soil respiration, and by using eddy covariance flux measurements, primary production (GPP) was estimated in the 12- and 100-year-old forests, and related to mycelial respiration and CUE. As hypothesized, mycelial CUE decreased significantly with increasing forest age by c. 65%, supposedly related to a shift in mycorrhizal community composition and a metabolic adjustment reducing their own biomass N demand with declining soil N availability. Furthermore, mycelial CUE increased by a factor of five over the growing season; from 0.03 in May to 0.15 in November, and we propose that the seasonal change in CUE is regulated by a decrease in photosynthate production and temperature. The respiratory contribution of mycorrhizal mycelium ranged from 14% to 26% of total soil respiration, and was on average 17% across all sites and occasions. Synthesis. Carbon is retained more efficiently in mycorrhizal mycelium late in the growing season, when fungi have access to a more balanced C and nutrient supplies. Earlier in the growing season, at maximum host plant photosynthesis, when below-ground C availability is high in relation to N, the fungi respire excess C resulting in lower mycelial carbon use efficiency (CUE). Additionally, C is retained less efficiently in mycorrhizal fungal biomass in older forest stands characterized by more nutrient depleted soils than younger forest stands.

Place, publisher, year, edition, pages
2019. Vol. 107, no 6, p. 2808-2822
Keywords [en]
boreal, carbon use efficiency, chronosequence, ectomycorrhizal, extraradical mycelium, mycelial biomass, mycelial respiration, soil respiration
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-175944DOI: 10.1111/1365-2745.13209ISI: 000491025800024OAI: oai:DiVA.org:su-175944DiVA, id: diva2:1369886
Available from: 2019-11-13 Created: 2019-11-13 Last updated: 2019-11-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Clemmensen, Karina E.Manzoni, Stefano
By organisation
Department of Physical Geography
In the same journal
Journal of Ecology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf