Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Assessment of the theoretical limit in instrumental detectability of northern high-latitude methane sources using delta C-13(CH4) atmospheric signals
Show others and affiliations
Number of Authors: 82019 (English)In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 19, no 19, p. 12141-12161Article in journal (Refereed) Published
Abstract [en]

Recent efforts have brought together bottom-up quantification approaches (inventories and process-based models) and top-down approaches using regional observations of methane atmospheric concentrations through inverse modelling to better estimate the northern high-latitude methane sources. Nevertheless, for both approaches, the relatively small number of available observations in northern high-latitude regions leaves gaps in our understanding of the drivers and distributions of the different types of regional methane sources. Observations of methane isotope ratios, performed with instruments that are becoming increasingly affordable and accurate, could bring new insights on the contributions of methane sources and sinks. Here, we present the source signal that could be observed from methane isotopic (CH4)-C-13 measurements if high-resolution observations were available and thus what requirements should be fulfilled in future instrument deployments in terms of accuracy in order to constrain different emission categories. This theoretical study uses the regional chemistry-transport model CHIMERE driven by different scenarios of isotopic signatures for each regional methane source mix. It is found that if the current network of methane monitoring sites were equipped with instruments measuring the isotopic signal continuously, only sites that are significantly influenced by emission sources could differentiate regional emissions with a reasonable level of confidence. For example, wetland emissions require daily accuracies lower than 0.2 parts per thousand for most of the sites. Detecting East Siberian Arctic Shelf (ESAS) emissions requires accuracies lower than 0.05 parts per thousand at coastal Russian sites (even lower for other sites). Freshwater emissions would be detectable with an uncertainty lower than 0.1 parts per thousand for most continental sites. Except Yakutsk, Siberian sites require stringent uncertainty (lower than 0.05 parts per thousand) to detect anthropogenic emissions from oil and gas or coal production. Remote sites such as Zeppelin, Summit, or Alert require a daily uncertainty below 0.05 parts per thousand to detect any regional sources. These limits vary with the hypothesis on isotopic signatures assigned to the different sources.

Place, publisher, year, edition, pages
2019. Vol. 19, no 19, p. 12141-12161
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-175695DOI: 10.5194/acp-19-12141-2019ISI: 000488976600004OAI: oai:DiVA.org:su-175695DiVA, id: diva2:1370173
Available from: 2019-11-14 Created: 2019-11-14 Last updated: 2019-11-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Berchet, AntoineThornton, Brett F.Crill, Patrick M.
By organisation
Department of Geological Sciences
In the same journal
Atmospheric Chemistry And Physics
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf