Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Oscillatory superfluid Ekman pumping in helium II and neutron stars
Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Montana State University, USA.
Number of Authors: 12015 (English)In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 783, p. 251-282Article in journal (Refereed) Published
Abstract [en]

The linear response of a superfluid, rotating uniformly in a cylindrical container and threaded with a large number of vortex lines, to an impulsive increase in the angular velocity of the container is investigated. At zero temperature and with perfect pinning of vortices to the top and bottom of the container, we demonstrate that the system oscillates persistently with a frequency proportional to the vortex line tension parameter to the quarter power. This low-frequency mode is generated by a secondary flow analogous to classical Ekman pumping that is periodically reversed by the vortex tension in the boundary layers. We compare analytic solutions to the two-fluid equations by Chandler & Bay in (J. Low Temp. Phys., vol. 62, 1986, pp. 119-142) with the spin-up experiments by Tsakadze & Tsakadze (J. Low Temp. Phys., vol. 39, 19)0, pp. 649-688) in helium II and find that the frequency agrees within a factor of four, although the experiment is not perfectly suited to the application of linear theory. We argue that this oscillatory Ekman pumping mode, and not Tkachenko modes, provides a natural explanation for the observed oscillation. In neutron stars, the oscillation period depends on the pinning interaction between neutron vortices and flux tubes in the outer core. Using a simplified pinning model, we demonstrate that strong pinning can accommodate modes with periods of days to years, which are only weakly damped by mutual friction over longer time scales.

Place, publisher, year, edition, pages
2015. Vol. 783, p. 251-282
Keywords [en]
geophysical and geological flows, quantum fluids, rotating flows
National Category
Mechanical Engineering Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-176175DOI: 10.1017/jfm.2015.553ISI: 000365009700011OAI: oai:DiVA.org:su-176175DiVA, id: diva2:1373992
Available from: 2019-11-28 Created: 2019-11-28 Last updated: 2019-11-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text
By organisation
Nordic Institute for Theoretical Physics (Nordita)
In the same journal
Journal of Fluid Mechanics
Mechanical EngineeringPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf