Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Porous Poly(ionic liquid) Membranes and Ionic Organic Cages
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
2019 (English)Conference paper, Poster (with or without abstract) (Refereed)
Abstract [en]

This poster will present two topics that are active in our research group, the porous poly(ionic liquid) membranes and the ionic organic cages.

Functional nanoporous polymer membranes with expanded surface area can be applied in broad fields, including separation, filtration, catalysis and energy applications. There are a number of established methods for the preparation of nanoporous membranes using neutral or weakly charged polymers. Although, fabrication of nanoporous polymer membranes from strong polyelectrolytes is far more difficult, we present our approach to nanoporous polyelectrolyte membranes by using poly(ionic liquid)s. [1] Poly(ionic liquid)s (PILs) are the polymerization products of ionic liquids, which combine certain properties and functions of polymeric materials (e,g. durability and good processability) and ILs (e.g. ion conductivity and thermal stability). We have exploited these favorable properties in the fabrication of nanoporous membranes from imidazolium based PILs through electrostatic complexation of PILs with polyacids. [2,3] The porous structure forms as a result of microphase separation of the hydrophobic PIL chains from the aqueous environment and is simultaneously stabilized by ionically crosslinked networks between the cationic PIL and the negatively charged neutralized polyacids. The membrane pore sizes can be tuned from nano- to micrometer scale by varying the degree of electrostatic complexation. In this meeting, we will update you with our latest progress in making nanoparticle-decorated nanoporous PIL membranes in a single step.

In the ionic organic cage part, we present our work about operating ionic organic cages (I-cages) to enclose small noble metal clusters (MCs) with adaptivity to water-oil phase. Organic molecular cages are a kind of multifunctional materials with molecular solubility, intrinsic open channels and unique ability to accommodate guest objects such as (MCs). [4] Herein, we report physical confinement of small noble MCs inside I-cages. [5] Metal clusters (MCs) are small sized particles < 2nm with significant properties such as discrete electronic structures, intense photoluminescence, high catalytic activity (hydrogeneration, oxidation, and coupling reactions). Dominated synthesis methods of MCs includes the surface-binding ligand approach (amphiphilic capping agents, and water-oil phase transfer agents). [6]

Place, publisher, year, edition, pages
2019.
National Category
Polymer Chemistry
Identifiers
URN: urn:nbn:se:su:diva-176312OAI: oai:DiVA.org:su-176312DiVA, id: diva2:1374400
Conference
Chemical Science Symposium on Functional Organic Materials, London, United Kingdom, 24-25 September, 2019
Available from: 2019-11-30 Created: 2019-11-30 Last updated: 2019-12-02Bibliographically approved

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Khorsand Kheirabad, AtefehSun, Jian-keYuan, Jiayin
By organisation
Department of Materials and Environmental Chemistry (MMK)
Polymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf