Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mechanistic Insights into Solid-State p-Type Dye-Sensitized Solar Cells
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Show others and affiliations
Number of Authors: 102019 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 123, no 43, p. 26151-26160Article in journal (Refereed) Published
Abstract [en]

The study of p-type dye sensitized solar cells (p-DSCs) is appealing but challenging. Although the devices have been studied for 20 years, the light conversion efficiency lags far behind those of n-DSCs. Very recently, on the basis of a core-shell structure, a novel solid-state p-DSC (p-ssDSCs) has been fabricated, which showed great enhancement in open-circuit voltage and dye regeneration rate. To further improve the performance of such devices, charge diffusion, recombination process, and the main limiting factors have to be understood. In the present paper, core-shell p-ssDSCs with ZnO as an electron conductor were fabricated by atomic layer deposition. The charge transport time was determined to be ca. 0.1 ms, which is about 2 orders of magnitude faster than those of typical liquid devices with I-/I-3(-) as a redox mediator. As a consequence, the devices exhibit the highest reported charge diffusion coefficient (D-d)' among p-DSCs. It is ascribed to an electron-limiting diffusion process by the ambipolar diffusion model, suggesting a different charge-transport-determining mechanism in contrast to liquid p-DSCs. The charge recombination rate is 1-2 orders of magnitude slower than its charge transport time, mandating that the estimated charge collection efficiency is near unity. Detailed analysis of the incident photon-to-electron conversion efficiency suggests that the energy conversion efficiency in these p-ssDSCs is currently limited by a large fraction of dyes that is not fully electrically connected in the device.

Place, publisher, year, edition, pages
2019. Vol. 123, no 43, p. 26151-26160
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-176609DOI: 10.1021/acs.jpcc.9b08251ISI: 000493865700013OAI: oai:DiVA.org:su-176609DiVA, id: diva2:1376676
Available from: 2019-12-10 Created: 2019-12-10 Last updated: 2019-12-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Lin, JunzhongSun, Junliang
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
The Journal of Physical Chemistry C
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf