Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of polarisation and choice of event generator on spectra from dark matter annihilations
Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Number of Authors: 32019 (English)In: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, no 10, article id 079Article in journal (Refereed) Published
Abstract [en]

If indirect detection searches are to be used to discriminate between dark matter particle models, it is crucial to understand the expected energy spectra of secondary particles such as neutrinos, charged antiparticles and gamma rays emerging from dark matter annihilations in the local Universe. In this work we study the effect that both the choice of event generator and the polarisation of the final state particles can have on these predictions. For a variety of annihilation channels and dark matter masses, we compare yields obtained with Pythia8 and Herwig7 of all of the aforementioned secondary particle species. We investigate how polarised final states can change these results and do an extensive study of how the polarisation can impact the expected flux of neutrinos from dark matter annihilations in the centre of the Sun. We find that differences between the event generators are larger for yields of hadronic end products such as antiprotons, than for leptonic end products. Concerning polarisation, we conversely find the largest differences in the leptonic spectra. The large differences in the leptonic spectra point to the importance of including polarisation effects in searches for neutrinos from dark matter annihilations in the Sun. However, we find that these differences are ultimately somewhat washed out by propagation effects of the neutrinos in the Sun.

Place, publisher, year, edition, pages
2019. no 10, article id 079
Keywords [en]
dark matter theory, dark matter experiments, neutrino astronomy
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-176751DOI: 10.1088/1475-7516/2019/10/079ISI: 000494968100004OAI: oai:DiVA.org:su-176751DiVA, id: diva2:1377158
Available from: 2019-12-11 Created: 2019-12-11 Last updated: 2019-12-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Niblaeus, CarlEdsjö, Joakim
By organisation
The Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Journal of Cosmology and Astroparticle Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf