Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
GROWTH on S190425z: Searching Thousands of Square Degrees to Identify an Optical or Infrared Counterpart to a Binary Neutron Star Merger with the Zwicky Transient Facility and Palomar Gattini-IR
Show others and affiliations
Number of Authors: 802019 (English)In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 885, no 1, article id L19Article in journal (Refereed) Published
Abstract [en]

The third observing run by LVC has brought the discovery of many compact binary coalescences. Following the detection of the first binary neutron star merger in this run (LIGO/Virgo S190425z), we performed a dedicated follow-up campaign with the Zwicky Transient Facility (ZTF) and Palomar Gattini-IR telescopes. The initial skymap of this single-detector gravitational wave (GW) trigger spanned most of the sky observable from Palomar Observatory. Covering 8000 deg(2) of the initial skymap over the next two nights, corresponding to 46% integrated probability, ZTF system achieved a depth of 21 m(AB) in g- and r-bands. Palomar Gattini-IR covered 2200 square degrees in J-band to a depth of 15.5 mag, including 32% integrated probability based on the initial skymap. The revised skymap issued the following day reduced these numbers to 21% for the ZTF and 19% for Palomar Gattini-IR. We narrowed 338,646 ZTF transient ?alerts? over the first two nights of observations to 15 candidate counterparts. Two candidates, ZTF19aarykkb and ZTF19aarzaod, were particularly compelling given that their location, distance, and age were consistent with the GW event, and their early optical light curves were photometrically consistent with that of kilonovae. These two candidates were spectroscopically classified as young core-collapse supernovae. The remaining candidates were ruled out as supernovae. Palomar Gattini-IR did not identify any viable candidates with multiple detections only after merger time. We demonstrate that even with single-detector GW events localized to thousands of square degrees, systematic kilonova discovery is feasible.

Place, publisher, year, edition, pages
2019. Vol. 885, no 1, article id L19
Keywords [en]
Gravitational wave astronomy, Transient detection, Optical telescopes
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-176568DOI: 10.3847/2041-8213/ab4ad8ISI: 000498620900003OAI: oai:DiVA.org:su-176568DiVA, id: diva2:1378892
Available from: 2019-12-16 Created: 2019-12-16 Last updated: 2019-12-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Biswas, RahulGoobar, ArielSollerman, Jesper
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)Department of Astronomy
In the same journal
Astrophysical Journal Letters
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf