Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The physics of governance networks: critical transitions in contagion dynamics on multilayer adaptive networks with application to the sustainable use of renewable resources
Show others and affiliations
Number of Authors: 52019 (English)In: The European Physical Journal Special Topics, ISSN 1951-6355, E-ISSN 1951-6401, Vol. 228, no 11, p. 2357-2369Article in journal (Refereed) Published
Abstract [en]

Adaptive networks are a versatile approach to model phenomena such as contagion and spreading dynamics, critical transitions and structure formation that emerge from the dynamic coevolution of complex network structure and node states. Adaptive networks have been successfully applied to study and understand phenomena ranging from epidemic spreading, infrastructure, swarm dynamics and opinion formation to the sustainable use of renewable resources. Here, we study critical transitions in contagion dynamics on multilayer adaptive networks with dynamic node states and present an application to the governance of sustainable resource use. We focus on a three-layer adaptive network model, where a polycentric governance network interacts with a social network of resource users which in turn interacts with an ecological network of renewable resources. We uncover that sustainability is favored for slow interaction timescales, large homophilic network adaptation rate (as long it is below the fragmentation threshold) and high taxation rates. Interestingly, we also observe a trade-off between an eco-dictatorship (reduced model with a single governance actor that always taxes unsustainable resource use) and the polycentric governance network of multiple actors. In the latter setup, sustainability is enhanced for low but hindered for high tax rates compared to the eco-dictatorship case. These results highlight mechanisms generating emergent critical transitions in contagion dynamics on multilayer adaptive networks and show how these can be understood and approximated analytically, relevant for understanding complex adaptive systems from various disciplines ranging from physics and epidemiology to sociology and global sustainability science. The paper also provides insights into potential critical intervention points for policy in the form of taxes in the governance of sustainable renewable resource use that can inform more process-detailed social-ecological modeling.

Place, publisher, year, edition, pages
2019. Vol. 228, no 11, p. 2357-2369
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-177536DOI: 10.1140/epjst/e2019-900120-4ISI: 000501872300002OAI: oai:DiVA.org:su-177536DiVA, id: diva2:1383493
Available from: 2020-01-08 Created: 2020-01-08 Last updated: 2020-01-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Donges, Jonathan F.
By organisation
Stockholm Resilience Centre
In the same journal
The European Physical Journal Special Topics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf