Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the estimation of the local dark matter density using the rotation curve of the Milky Way
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Michigan, U.S.A..
Show others and affiliations
Number of Authors: 52019 (English)In: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, no 10, article id 037Article in journal (Refereed) Published
Abstract [en]

The rotation curve of the Milky Way is commonly used to estimate the local dark matter density rho(DM,circle dot). However, the estimates are subject to the choice of the distribution of baryons needed in this type of studies. In this work we explore several Galactic mass models that differ in the distribution of baryons and dark matter, in order to determine rho(DM,circle dot). For this purpose we analyze the precise circular velocity curve measurement of the Milky Way up to similar to 25 kpc from the Galactic centre obtained from Gaia DR2 [1]. We find that the estimated value of rho(DM,circle dot) stays robust to reasonable changes in the spherical dark matter halo. However, we show that rho(DM,circle dot) is affected by the choice of the model for the underlying baryonic components. In particular, we find that rho(DM,circle dot) is mostly sensitive to uncertainties in the disk components of the Galaxy. We also show that, when choosing one particular baryonic model, the estimate of rho(DM,circle dot) has an uncertainty of only about 10% of its best-fit value, but this uncertainty gets much bigger when we also consider the variation of the baryonic model. In particular, the rotation curve method does not allow to exclude the presence of an additional very thin component, that can increase rho(DM,circle dot) by more than a factor of 8 (the thin disk could even be made of dark matter). Therefore, we conclude that exclusively using the rotation curve of the Galaxy is not enough to provide a robust estimate of rho(DM,circle dot). For all the models that we study without the presence of an additional thin component, our resulting estimates of the local dark matter density take values in the range rho(DM,circle dot) similar or equal to 0.3-0.4 GeV/cm(3), consistent with many of the estimates in the literature.

Place, publisher, year, edition, pages
2019. no 10, article id 037
Keywords [en]
galaxy morphology, rotation curves of galaxies, semi-analytic modeling
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-177531DOI: 10.1088/1475-7516/2019/10/037ISI: 000503491500005OAI: oai:DiVA.org:su-177531DiVA, id: diva2:1383521
Available from: 2020-01-08 Created: 2020-01-08 Last updated: 2020-01-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Fernández de Salas, PabloMalhan, KhyatiFreese, Katherine
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)Nordic Institute for Theoretical Physics (Nordita)
In the same journal
Journal of Cosmology and Astroparticle Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf