Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Upconversion luminescence in sub-10 nm b-NaGdF4: Yb3+,Er3+ nanoparticles
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).ORCID iD: 0000-0002-2800-1684
Number of Authors: 32019 (English)In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 9, no 60, p. 34784-34792Article in journal (Refereed) Published
Abstract [en]

Sub-10 nm beta-NaGdF4:18% Yb3+,2% Er3+ nanoparticles were synthesized in ethylene glycol and various ionic liquids under microwave heating. The products were characterized by powder X-ray diffraction, electron microscopy, and upconversion (UC) luminescence spectroscopy. After Yb3+ excitation at 970 nm, Er3+ ions are excited by energy transfer upconversion and show the typical green and red emission bands. The UC luminescence intensity was optimized with respect to reactant concentrations, solvents, and reaction temperature and time. The strongest UC emission was achieved for sub-20 nm core-shell nanoparticles which were obtained in the ionic liquid diallyldimethylammonium bis(trifluoromethanesulfonyl)amide from a two-step synthesis without intermediate separation. Strictly anhydrous reaction conditions, a high fluoride/rare earth ion ratio, and a core-shell structure are important parameters to obtain highly luminescent nanoparticles. These conditions reduce non-radiative losses due to defects and high energy acceptor modes of surface ligands. A low power excitation of the core-shell particles by 70 mW at 970 nm results in an impressive UC emission intensity of 0.12% compared to the bulk sample.

Place, publisher, year, edition, pages
2019. Vol. 9, no 60, p. 34784-34792
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-177519DOI: 10.1039/c9ra05950dISI: 000498844000011OAI: oai:DiVA.org:su-177519DiVA, id: diva2:1384529
Available from: 2020-01-10 Created: 2020-01-10 Last updated: 2020-01-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Tessitore, GabriellaMudring, Anja-Verena
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
RSC Advances
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf