Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions
Show others and affiliations
Number of Authors: 72020 (English)In: Nature Climate Change, ISSN 1758-678X, E-ISSN 1758-6798, Vol. 10, no 1, p. 48-53Article in journal (Refereed) Published
Abstract [en]

In an interconnected world, simultaneous extreme weather events in distant regions could potentially impose high-end risks for societies(1,2). In the mid-latitudes, circumglobal Rossby waves are associated with a strongly meandering jet stream and might cause simultaneous heatwaves and floods across the northern hemisphere(3-6). For example, in the summer of 2018, several heat and rainfall extremes occurred near-simultaneously(7). Here we show that Rossby waves with wavenumbers 5 and 7 have a preferred phase position and constitute recurrent atmospheric circulation patterns in summer. Those patterns can induce simultaneous heat extremes in specific regions: Central North America, Eastern Europe and Eastern Asia for wave 5, and Western Central North America, Western Europe and Western Asia for wave 7. The probability of simultaneous heat extremes in these regions increases by a factor of up to 20 for the most severe heat events when either of these two waves dominate the circulation. Two or more weeks per summer spent in the wave-5 or wave-7 regime are associated with 4% reductions in crop production when averaged across the affected regions, with regional decreases of up to 11%. As these regions are important for global food production, the identified teleconnections have the potential to fuel multiple harvest failures, posing risks to global food security(8). A large-scale meandering in the jet stream can cause simultaneous heat extremes in distant regions. When Rossby waves with wavenumbers 5 and 7 dominate circulation, there is an increased risk of heat extremes across major food-producing regions, raising the potential of multiple crop failures.

Place, publisher, year, edition, pages
2020. Vol. 10, no 1, p. 48-53
Keywords [en]
Atmospheric dynamics, Environmental impact
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-178634DOI: 10.1038/s41558-019-0637-zISI: 000508087400018OAI: oai:DiVA.org:su-178634DiVA, id: diva2:1396095
Available from: 2020-02-25 Created: 2020-02-25 Last updated: 2020-02-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Donges, Jonathan F.
By organisation
Stockholm Resilience Centre
In the same journal
Nature Climate Change
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 10 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf