Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Inorganic suspended matter as an indicator of terrestrial influence in Baltic Sea coastal areas - Algorithm development and validation, and ecological relevance
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
Number of Authors: 32020 (English)In: Remote Sensing of Environment, ISSN 0034-4257, E-ISSN 1879-0704, Vol. 237, article id 111609Article in journal (Refereed) Published
Abstract [en]

Suspended particulate matter (SPM) consists both of an organic (OSPM) and an inorganic fraction (ISPM) and the latter can be used as an indicator for coastal influence in the Baltic Sea. The concentration of SPM can be derived from particle scatter if the specific scattering properties of the respective water body are known. In this paper we show that likewise, ISPM can be derived reliably from remotely sensed particle scatter. An empirical algorithm between particle scatter (AC9 data) and ISPM concentration (measured gravimetrically) was derived from in-water measurements. This regional algorithm was then applied to the iop_bpart level 2 product (i.e. the particle scatter measured at 443 nm) derived from OLCI data on Sentinel-A (S3A) using the C2RCC neural network and validated against an independent data set. The standard error of the derived OLCI match-up data was 10%, and was thus within the goal of the mission requirements of Sentinel-3. The generated S3 composite images from spring and autumn 2018 show that in the Baltic Sea most of the ISPM falls out rather close to the shore, whereas only a very small proportion of ISPM is carried further off-shore. This is also supported by in situ ISPM transects measured in the coastal zone. The ISPM images clearly highlight the areas that are most strongly influenced by terrestrial matter. Differences between the NE Baltic and the SE Baltic proper can be explained by the difference in hydrology and coastal influence as well as bathymetry and wind-wave stirring. The method is of interest for coastal zone management and for assessing the effect of seasonal changes in terrestrial run-off and wind-driven resuspension of sediments. It can also be used to evaluate the effect of climate change which has led to an increase of extreme storm and flooding events that are usually accompanied by increased erosion and run-off from land. Last but not least, turbidity caused by particles influences the light conditions in inner coastal areas and bays, which has a profound effect on pelagic productivity, the maximum growth of macroalgae as well as fish behaviour.

Place, publisher, year, edition, pages
2020. Vol. 237, article id 111609
Keywords [en]
Inorganic suspended matter, Remote sensing reflectance, Particle scatter, White scatterers, Algorithm development, Sentinel-3 Ocean and Land Colour Instrument (OLCI), C2RCC neural net, SNAP, Light limitation, Baltic Sea
National Category
Earth and Related Environmental Sciences Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-179529DOI: 10.1016/j.rse.2019.111609ISI: 000509819300055OAI: oai:DiVA.org:su-179529DiVA, id: diva2:1412650
Available from: 2020-03-06 Created: 2020-03-06 Last updated: 2025-01-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Kratzer, SusanneKyryliuk, Dmytro

Search in DiVA

By author/editor
Kratzer, SusanneKyryliuk, Dmytro
By organisation
Department of Ecology, Environment and Plant Sciences
In the same journal
Remote Sensing of Environment
Earth and Related Environmental SciencesBiological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 38 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf