Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Updated Design of the CMB Polarization Experiment Satellite LiteBIRD
Show others and affiliations
Number of Authors: 2212020 (English)In: Journal of Low Temperature Physics, ISSN 0022-2291, E-ISSN 1573-7357, Vol. 199, no 3-4, p. 1107-1117Article in journal (Refereed) Published
Abstract [en]

Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite cosmic microwave background (CMB) polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA's H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the CMB by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34 and 448 GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy's foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5 K for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun-Earth Lagrangian point, L2, are planned for 3 years. An international collaboration between Japan, the USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science, JAXA, selected LiteBIRD as the strategic large mission No. 2.

Place, publisher, year, edition, pages
2020. Vol. 199, no 3-4, p. 1107-1117
Keywords [en]
Satellite, Cosmic microwave background, Polarization, Inflation, Primordial gravitational wave
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-179608DOI: 10.1007/s10909-019-02329-wISI: 000509338600002OAI: oai:DiVA.org:su-179608DiVA, id: diva2:1415405
Available from: 2020-03-18 Created: 2020-03-18 Last updated: 2022-03-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Duivenvoorden, AdriGudmundsson, Jón E.Namikawa, T.Shiraishi, M.Weller, J.Wollack, E.Yamasaki, N. Y.Zannoni, M.

Search in DiVA

By author/editor
Duivenvoorden, AdriGudmundsson, Jón E.Namikawa, T.Shiraishi, M.Weller, J.Wollack, E.Yamasaki, N. Y.Zannoni, M.
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Journal of Low Temperature Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 40 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf