Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The molecular basis for sugar import in malaria parasites
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.ORCID iD: 0000-0003-3476-9478
Show others and affiliations
Number of Authors: 102020 (English)In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 578, no 7794, p. 321-325Article in journal (Refereed) Published
Abstract [en]

Elucidating the mechanism of sugar import requires a molecular understanding of how transporters couple sugar binding and gating events. Whereas mammalian glucose transporters (GLUTs) are specialists(1), the hexose transporter from the malaria parasite Plasmodium falciparum PfHT1(2,3) has acquired the ability to transport both glucose and fructose sugars as efficiently as the dedicated glucose (GLUT3) and fructose (GLUT5) transporters. Here, to establish the molecular basis of sugar promiscuity in malaria parasites, we determined the crystal structure of PfHT1 in complex with d-glucose at a resolution of 3.6 angstrom. We found that the sugar-binding site in PfHT1 is very similar to those of the distantly related GLUT3 and GLUT5 structures(4,5). Nevertheless, engineered PfHT1 mutations made to match GLUT sugar-binding sites did not shift sugar preferences. The extracellular substrate-gating helix TM7b in PfHT1 was positioned in a fully occluded conformation, providing a unique glimpse into how sugar binding and gating are coupled. We determined that polar contacts between TM7b and TM1 (located about 15 angstrom from d-glucose) are just as critical for transport as the residues that directly coordinate d-glucose, which demonstrates a strong allosteric coupling between sugar binding and gating. We conclude that PfHT1 has achieved substrate promiscuity not by modifying its sugar-binding site, but instead by evolving substrate-gating dynamics. Crystal structure of the Plasmodium falciparum hexose transporter PfHT1 reveals the molecular basis of its ability to transport multiple types of sugar as efficiently as the dedicated mammalian glucose and fructose transporters.

Place, publisher, year, edition, pages
2020. Vol. 578, no 7794, p. 321-325
National Category
Biological Sciences Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-179597DOI: 10.1038/s41586-020-1963-zISI: 000510138600004PubMedID: 31996846OAI: oai:DiVA.org:su-179597DiVA, id: diva2:1416284
Available from: 2020-03-23 Created: 2020-03-23 Last updated: 2023-10-09Bibliographically approved
In thesis
1. The molecular basis for substrate recognition and gating in sugar transporters
Open this publication in new window or tab >>The molecular basis for substrate recognition and gating in sugar transporters
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Sugar is a vital sustenance for most forms of life. For a cell to take up sugar, specialized transport proteins embedded into the membrane bilayer known as sugar porters, are required. Dysfunction of sugar porters is associated with some metabolic diseases, and their expression is upregulated in many cancers as they typically require more sugar than normal cells. Furthermore, sugar porters also play a role in the vitality of the malaria parasite.

The mechanism of sugar transport is known as a rocker-switch alternating access mechanism. Simplistically, sugar binds between two similar domains on the outside of a sugar transporter and the domains then move around the sugar, so the sugar is exposed to the inside. During this domain movement, protein mass will block the sugar binding site from both outside and inside, forming the occluded state which is essential to ensure no substrate leakage during transport. Despite this relatively simple model of transport, little is known about how different sugar porters display diverse substrate specificity, affinity, and turnover.

In the four papers making up this thesis, we structurally characterize missing pieces of the sugar transport cycle, identify how these states are connected with simulations, and assess factors contributing to sugar transport by functional assays. With simulations, we show how sugar catalyzes conformational change by interacting with the occluded state. We demonstrate our functional proteoliposome-based transport assay, which allows us to measure the effect of protein mutations, inhibitors, and lipid influences in sugar recognition and turnover. Characterization of the malaria parasite hexose transporter PfHT1 has allowed us to understand antimalarial inhibitor specificity against this protein which could have implications in combating the disease, as well as pharmacological control of sugar porters in general.

Place, publisher, year, edition, pages
Stockholm: Department of Biochemistry and Biophysics, Stockholm University, 2023. p. 63
Keywords
membrane transport, sugar transporter, simulations, lipids, antimalarial drugs
National Category
Biochemistry Molecular Biology Biophysics
Research subject
Biochemistry
Identifiers
urn:nbn:se:su:diva-222119 (URN)978-91-8014-528-2 (ISBN)978-91-8014-529-9 (ISBN)
Public defence
2023-12-08, Vivi Täckholmssalen (Q211), NPQ-huset, Svante Arrhenius väg 20 and online via Zoom, public link is available at the department website, Stockholm, 14:30 (English)
Opponent
Supervisors
Available from: 2023-11-15 Created: 2023-10-09 Last updated: 2025-02-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Qureshi, Abdul AzizSuades, AlbertMatsuoka, ReiBrock, JosephMcComas, Sarah E.Nji, EmmanuelOrellana, LauraClaesson, MagnusDrew, David

Search in DiVA

By author/editor
Qureshi, Abdul AzizSuades, AlbertMatsuoka, ReiBrock, JosephMcComas, Sarah E.Nji, EmmanuelOrellana, LauraClaesson, MagnusDrew, David
By organisation
Department of Biochemistry and Biophysics
In the same journal
Nature
Biological SciencesChemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 116 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf