Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A protein proximity atlas reveals connectivity of mitochondrial translation and OXPHOS assembly at the ribosomal tunnel exit
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
National Category
Biochemistry Molecular Biology
Research subject
Biochemistry
Identifiers
URN: urn:nbn:se:su:diva-180245OAI: oai:DiVA.org:su-180245DiVA, id: diva2:1416487
Available from: 2020-03-24 Created: 2020-03-24 Last updated: 2025-02-20Bibliographically approved
In thesis
1. Organization and regulation of mitochondrial gene expression
Open this publication in new window or tab >>Organization and regulation of mitochondrial gene expression
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Mitochondria possess their own genome, remnant of the ancestral eubacterial endosymbiont DNA. This mitochondrial genome encodes mostly few key subunits of the respiratory chain. In order to synthesize these few proteins, mitochondria contain a complete gene expression machinery. Crucially, during the evolution, this apparatus dramatically diverged from its bacterial original counterpart, acquiring unique organellar characteristics. Hence, the mechanisms underlying organization and regulation of mitochondrial gene expression are still enigmatic.

In this thesis, I used the model organism Saccharomyces cerevisiae to reveal few aspects of mitochondrial gene expression. Surprisingly, I report that translation initiation strongly diverged from the bacterial one. In fact, the mitochondrial counterpart of the bacterial translation initiation factor 3 is dispensable in yeast. Furthermore, the research made in this work contributed to establish the proximity labelling technique BioID for yeast mitochondrial proteins. This method permitted to analyse extensively the mitochondrial gene expression milieu, creating a comprehensive proximity-based network of factors involved in biogenesis of mitochondrial synthesized proteins. This protein network revealed a unique organization of factors involved in mitochondrial gene expression, meticulously tailored for the synthesis of few organellar proteins. Crucially, we could identify a clear spatial distribution of factors according to their biological function. Moreover, the thesis describes how the polypeptide tunnel exit hosts proteins involved in multiple functions. First, the results show how factors involved in early maturation of Cox1, the core subunit of complex IV of the respiratory chain, reside at the polypeptide tunnel exit. Second, we demonstrate that the synthesis of cytochrome b, subunit of complex III, is also activated at the polypeptide tunnel exit. In fact, proteins taking part in the regulation of mitochondrial gene expression called translational activators interact with this area in an alternate fashion. When synthesis of cytochrome b is repressed, its coding mRNA COB is sequestered at the polypeptide tunnel exit via the binding to Cbs1, a translational activator. The signal that triggers translation initiation is given by Cbp3-Cbp6, a complex that participates in cytochrome b assembly. When a previously synthesized cytochrome b is correctly assembled into complex III, Cbp3-Cbp6 interacts with the polypeptide tunnel exit, forcing the relocation of Cbs1, and making COB mRNA available for a new round of translation. This mechanism represents a unique form of tuning between mitochondrial and nuclear gene expression systems, essential for the correct assembly of complexes made up by proteins of dual origin.

In summary, the work presented in this thesis reveals novel features of the organization and regulation of the mitochondrial gene expression, highlighting many distinctive organellar features. The concepts and techniques presented here will be a starting point to elucidate many unknown aspects of mitochondrial protein synthesis.

Place, publisher, year, edition, pages
Stockholm: Department of Biochemistry and Biophysics, Stockholm University, 2020. p. 67
Keywords
Mitochondria, mitochondrial gene expression, post-transcriptional regulation, mitochondrial ribosome, protein-protein proximity, BioID, feedback loop
National Category
Biochemistry Molecular Biology
Research subject
Biochemistry
Identifiers
urn:nbn:se:su:diva-180258 (URN)978-91-7911-094-9 (ISBN)978-91-7911-095-6 (ISBN)
Public defence
2020-05-22, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Submitted.

Available from: 2020-04-27 Created: 2020-03-24 Last updated: 2025-02-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Singh, Abeer PrakashSalvatori, RogerCarlström, AndreasOtt, Martin

Search in DiVA

By author/editor
Singh, Abeer PrakashSalvatori, RogerCarlström, AndreasOtt, Martin
By organisation
Department of Biochemistry and Biophysics
BiochemistryMolecular Biology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 127 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf