We investigate the solution space of the beta-deformed Quantum Spectral Curve by studying a sample of solutions corresponding to single-trace operators that in the undeformed theory belong to the Konishi multiplet. We discuss how to set the precise boundary conditions for the leading Q-system for a given state, how to solve it, and how to build perturbative corrections to the P mu-system. We confirm and add several loop orders to known results in the literature.