Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Solutions to indefinite weakly coupled cooperative elliptic systems
Stockholm University, Faculty of Science, Department of Mathematics.ORCID iD: 0000-0001-8797-4657
2022 (English)In: Topological Methods in Nonlinear Analysis, ISSN 1230-3429, Vol. 59, no 2A, p. 553-568Article in journal (Refereed) Published
Abstract [en]

We study the elliptic system

where Ω is a bounded domain in RN , N ≥ 3, κ1, κ2 ∈ R, µ1, µ2, λ > 0, α, β > 1, and α + β = p ≤ 2∗ := 2N /(N − 2). For p ∈ (2, 2∗) we establish the existence of a ground state and of a prescribed number of fully nontrivial solutions to this system for λ sufficiently large. If p = 2∗ and κ1, κ2 > 0 we establish the existence of a ground state for λ sufficiently large if, either N ≥ 5, or N = 4 and neither κ1 nor κ2 are Dirichlet eigenvalues of −∆ in Ω.

Place, publisher, year, edition, pages
2022. Vol. 59, no 2A, p. 553-568
Keywords [en]
Weakly coupled elliptic system, indefinite, cooperative, subcritical, critical, existence and multiplicity of solutions
National Category
Mathematics
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:su:diva-181519DOI: 10.12775/TMNA.2020.052ISI: 000848427600007Scopus ID: 2-s2.0-85133936698OAI: oai:DiVA.org:su-181519DiVA, id: diva2:1429255
Available from: 2020-05-08 Created: 2020-05-08 Last updated: 2022-09-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopusarXiv:2003.12343

Authority records

Szulkin, Andrzej

Search in DiVA

By author/editor
Szulkin, Andrzej
By organisation
Department of Mathematics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf