Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Super-multiplicativity of ideal norms in number fields
Stockholm University, Faculty of Science, Department of Mathematics.
Number of Authors: 12020 (English)In: Acta Arithmetica, ISSN 0065-1036, E-ISSN 1730-6264, Vol. 193, no 1, p. 75-93Article in journal (Refereed) Published
Abstract [en]

In this article we study inequalities of ideal norms. We prove that in a subring R of a number field every ideal can be generated by at most 3 elements if and only if the ideal norm satisfies N(IJ) ≥N(I)N(J) for every pair of non-zero ideals I and J of every ring extension of R contained in the normalization ˜R .

Place, publisher, year, edition, pages
2020. Vol. 193, no 1, p. 75-93
Keywords [en]
ideal norm, number ring, number field
National Category
Mathematics
Identifiers
URN: urn:nbn:se:su:diva-184917DOI: 10.4064/aa181010-26-3ISI: 000553062700003OAI: oai:DiVA.org:su-184917DiVA, id: diva2:1469624
Available from: 2020-09-22 Created: 2020-09-22 Last updated: 2022-02-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Marseglia, Stefano

Search in DiVA

By author/editor
Marseglia, Stefano
By organisation
Department of Mathematics
In the same journal
Acta Arithmetica
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 30 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf