Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Role of the Two Metals in the Active Sites of Heme Copper Oxidases-A Study of NO Reduction in cbb(3) Cytochrome c Oxidase
Stockholm University, Faculty of Science, Department of Organic Chemistry.ORCID iD: 0000-0003-0702-7831
Number of Authors: 12020 (English)In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 59, no 16, p. 11542-11553Article in journal (Refereed) Published
Abstract [en]

The superfamily of heme copper oxidases reduces molecular oxygen or nitric oxide, and the active sites comprise a high-spin heme group (a(3) or b(3)) and a non-heme metal (Cu-B or Fe-B). The cbb(3) C family of cytochrome c oxidases, with the highspin heme b(3) and CUB in the active site, is a subfamily of the heme copper oxidases that can reduce both molecular oxygen, which is the main substrate, and nitric oxide. The mechanism for NO reduction in cbb(3) oxidase is studied here using hybrid density functional theory and compared to other cytochrome c oxidases (A and B families), with a high-spin heme a(3) and Cu-B in the active site, and to cytochrome c dependent NO reductase, with a high-spin heme b(3) and a nonheme Fe-B in the active site. It is found that the reaction mechanism and the detailed reaction energetics of the cbb(3) oxidases are not similar to those of cytochrome c dependent NO reductase, which has the same type of high-spin heme group but a different nonheme metal. This is in contrast to earlier expectations. Instead, the NO reduction mechanism in cbb(3) oxidases is very similar to that in the other cytochrome c oxidases, with the same non-heme metal, CUB, and is independent of the type of high-spin heme group. The conclusion is that the type of non-heme metal (CUB or Fe-B) in the active site of the heme copper oxidases is more important for the reaction mechanisms than the type of high-spin heme, at least for the NO reduction reaction. The reason is that the protoncoupled reduction potentials of the active site cofactors determine the energetics for the NO reduction reaction, and they depend to a larger extent on the non-heme metal. Observed differences in NO reduction reactivity among the various cytochrome c oxidases may be explained by differences outside the BNC, affecting the rate of proton transfer, rather than in the BNC itself.

Place, publisher, year, edition, pages
2020. Vol. 59, no 16, p. 11542-11553
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-185357DOI: 10.1021/acs.inorgchem.0c01351ISI: 000562989200038PubMedID: 32799475OAI: oai:DiVA.org:su-185357DiVA, id: diva2:1477094
Available from: 2020-10-16 Created: 2020-10-16 Last updated: 2022-02-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Blomberg, Margareta R. A.

Search in DiVA

By author/editor
Blomberg, Margareta R. A.
By organisation
Department of Organic Chemistry
In the same journal
Inorganic Chemistry
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 30 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf