Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Search for Neutrino Point-source Populations in 7 yr of IceCube Data with Neutrino-count Statistics
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Show others and affiliations
Number of Authors: 3602020 (English)In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 893, no 2, article id 102Article in journal (Refereed) Published
Abstract [en]

The presence of a population of point sources in a data set modifies the underlying neutrino-count statistics from the Poisson distribution. This deviation can be exactly quantified using the non-Poissonian template fitting technique, and in this work we present the first application of this approach to the IceCube high-energy neutrino data set. Using this method, we search in 7 yr of IceCube data for point-source populations correlated with the disk of the Milky Way, the Fermi bubbles, the Schlegel, Finkbeiner, and Davis dust map, or with the isotropic extragalactic sky. No evidence for such a population is found in the data using this technique, and in the absence of a signal, we establish constraints on population models with source-count distribution functions that can be described by a power law with a single break. The derived limits can be interpreted in the context of many possible source classes. In order to enhance the flexibility of the results, we publish the full posterior from our analysis, which can be used to establish limits on specific population models that would contribute to the observed IceCube neutrino flux.

Place, publisher, year, edition, pages
2020. Vol. 893, no 2, article id 102
Keywords [en]
Astrostatistics, Astrostatistics distributions, Bayesian statistics, Neutrino astronomy, High energy astrophysics, Neutrino telescopes, Posterior distribution
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-186281DOI: 10.3847/1538-4357/ab7af9ISI: 000570310600001Scopus ID: 2-s2.0-85085083425OAI: oai:DiVA.org:su-186281DiVA, id: diva2:1484300
Available from: 2020-10-28 Created: 2020-10-28 Last updated: 2022-11-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ahrens, MaryonBohm, ChristianDeoskar, KunalFinley, ChadHultqvist, KlasO'Sullivan, ErinWalck, Christian

Search in DiVA

By author/editor
Ahrens, MaryonBohm, ChristianDeoskar, KunalFinley, ChadHultqvist, KlasO'Sullivan, ErinWalck, Christian
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Astrophysical Journal
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf