Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Velocity independent constraints on spin-dependent DM-nucleon interactions from IceCube and PICO
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Show others and affiliations
Number of Authors: 4202020 (English)In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 80, no 9, article id 819Article in journal (Refereed) Published
Abstract [en]

Adopting the Standard Halo Model (SHM) of an isotropic Maxwellian velocity distribution for dark matter (DM) particles in the Galaxy, the most stringent current constraints on their spin-dependent scattering cross-section with nucleons come from the IceCube neutrino observatory and the PICO-60 C3F8 superheated bubble chamber experiments. The former is sensitive to high energy neutrinos from the self-annihilation of DM particles captured in the Sun, while the latter looks for nuclear recoil events from DM scattering off nucleons. Although slower DM particles are more likely to be captured by the Sun, the faster ones are more likely to be detected by PICO. Recent N-body simulations suggest significant deviations from the SHM for the smooth halo component of the DM, while observations hint at a dominant fraction of the local DM being in substructures. We use the method of Ferrer et al. (JCAP 1509: 052, 2015) to exploit the complementarity between the two approaches and derive conservative constraints on DM-nucleon scattering. Our results constrain σSD3×10−39cm2(6×10−38cm2) at 90% C.L. for a DM particle of mass 1 TeV annihilating into τ+τ−(b ̄b) with a local density of ρDM=0.3GeV/cm3. The constraints scale inversely with ρDM and are independent of the DM velocity distribution.

Place, publisher, year, edition, pages
2020. Vol. 80, no 9, article id 819
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-186438DOI: 10.1140/epjc/s10052-020-8069-5ISI: 000569786700003OAI: oai:DiVA.org:su-186438DiVA, id: diva2:1490839
Available from: 2020-11-03 Created: 2020-11-03 Last updated: 2022-02-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Ahrens, MaryonBohm, ChristianDeoskar, KunalFinley, ChadHultqvist, KlasO'Sullivan, ErinWalck, Christian

Search in DiVA

By author/editor
Ahrens, MaryonBohm, ChristianDeoskar, KunalFinley, ChadHultqvist, KlasO'Sullivan, ErinWalck, Christian
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
European Physical Journal C
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 24 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf