Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Initial data and first evolutions of dust clouds in bimetric relativity
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).ORCID iD: 0000-0002-0207-8608
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).ORCID iD: 0000-0002-4487-9403
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).ORCID iD: 0000-0003-0243-1229
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).ORCID iD: 0000-0002-8380-6143
Number of Authors: 42020 (English)In: Classical and quantum gravity, ISSN 0264-9381, E-ISSN 1361-6382, Vol. 37, no 16, article id 165010Article in journal (Refereed) Published
Abstract [en]

We present a method for solving the constraint equations in the Hassan-Rosen bimetric theory to determine the initial data for the gravitational collapse of spherically symmetric dust. The setup leads to equations similar to those for a polytropic fluid in general relativity, here called Lane-Emden-like equations. Using a numerical code which solves the evolution equations in the standard 3 + 1 form, we also obtain a short-term development of the initial data for these bimetric spherical clouds. The evolution highlights some important features of the bimetric theory such as the interwoven and oscillating null cones representing the essential nonbidiagonality in the dynamics of the two metrics. The simulations are in the strong-field regime and show that, at least at an early stage, if the bimetric initial data are close to those for general relativity, the bimetric evolution stays close to the evolution in general relativity as well, and with no instabilities, albeit with small oscillations in the metric fields. In addition, we determine initial data and first evolution for vacuum bimetric spherically symmetric nonstationary solutions, providing generic counterexamples to a statement analog to Jebsen-Birkhoff theorem in bimetric relativity.

Place, publisher, year, edition, pages
2020. Vol. 37, no 16, article id 165010
Keywords [en]
modified gravity, ghost-free bimetric theory, bigravity, numerical bimetric relativity, Quantum Science & Technology
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-185333DOI: 10.1088/1361-6382/ab87d8ISI: 000559742300001OAI: oai:DiVA.org:su-185333DiVA, id: diva2:1505643
Available from: 2020-12-01 Created: 2020-12-01 Last updated: 2022-03-01Bibliographically approved
In thesis
1. Was Einstein Wrong?: Theoretical and observational constraints on massive gravity
Open this publication in new window or tab >>Was Einstein Wrong?: Theoretical and observational constraints on massive gravity
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

For more than a century, Einstein's theory of general relativity has described gravitational phenomena with astonishing precision. However, for the theory to fit observations we need to add two elusive substances: dark energy and dark matter. Together they add up to 95% of the energy budget of the Universe. Yet, we do not know what these substances are. Another question mark is the expansion rate of the Universe; two incompatible values are obtained depending on the measuring method. These problems (dark energy, dark matter, and the expansion rate) belong to the big questions within gravity today and they may be interpreted as signs that general relativity is not the final theory for gravity. As an alternative, in this thesis we analyze an extended theory of gravity called bimetric gravity. 

In general relativity (GR), gravity is massless which means that gravitational waves propagate at the speed of light. Hence, a natural extension is to consider theories where gravity has a mass. This is precisely what bimetric gravity achieves. The theoretical consistency of this theory is firmly established but it is also crucial to test if the theory agrees with observations. In fact, in this theory there are two types of gravitational waves/fields, one massless as in GR but also one massive. When observing gravitational phenomena, we observe a mix of the two. Depending on the mixing and on the mass of the massive field, observational signatures appear for example on cosmological scales, in gravitational wave events or on solar-system scales. Until recently the phenomenology of the full theory was still uncharted, and an important question was if all observational tests could be satisfied at the same time. To address this, we devised a unified framework that enables straightforward comparison between constraints from different probes, without being restricted to a particular region of the parameter space. The result is that bimetric gravity is compatible with observations and even fit data slightly better than GR. Together with the fact that the dark energy can be explained by the interaction between the two gravitational fields, we have shown that the theory is a viable dark energy candidate. At the same time, the observational data provides a substantial restriction on the parameter space that excludes many of the popular models in the literature – an important result in and of itself.

A longstanding issue within this theory has been to predict the growth of structure while avoiding exponential instabilities. Here, we propose a simple model which solves the full, nonlinear equations of motion, which can be used to calculate the growth of structure, without any instabilities. We also describe our work towards a framework for calculating the process of gravitational collapse in this theory where we manage to solve the equations numerically for a short time interval. The results indicate that the gravitational collapse proceeds as in general relativity, assuming that the initial conditions are similar.

Future work is needed to decide whether bimetric gravity can solve any of the other big questions within gravity today, such as the discrepant expansion rate of the Universe. In this thesis, we show that it is an observationally viable dark energy candidate that exhibits novel gravitational features. In short, gravity can be massive.

Place, publisher, year, edition, pages
Stockholm: Department of Physics, Stockholm University, 2022. p. 161
Keywords
Gravity, Massive gravity, Bimetric gravity, Cosmology, Gravitational collapse, Gravitational waves, Observational constraints
National Category
Other Physics Topics Astronomy, Astrophysics and Cosmology
Research subject
Theoretical Physics
Identifiers
urn:nbn:se:su:diva-202495 (URN)978-91-7911-806-8 (ISBN)978-91-7911-807-5 (ISBN)
Public defence
2022-04-22, sal FB42, AlbaNova universitetscentrum, Roslagstullsbacken 21 and online via Zoom, public link is available at the department website, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2022-03-30 Created: 2022-03-01 Last updated: 2022-03-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Kocic, MikicaTorsello, FrancescoHögås, MarcusMörtsell, Edvard

Search in DiVA

By author/editor
Kocic, MikicaTorsello, FrancescoHögås, MarcusMörtsell, Edvard
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Classical and quantum gravity
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf