Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Discovery of new stellar groups in the Orion complex: Towards a robust unsupervised approach
Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Faculty of Science, Department of Astronomy.
Number of Authors: 42020 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 643, article id A114Article in journal (Refereed) Published
Abstract [en]

We test the ability of two unsupervised machine learning algorithms, EnLink and Shared Nearest Neighbor (SNN), to identify stellar groupings in the Orion star-forming complex as an application to the 5D astrometric data from Gaia DR2. The algorithms represent two distinct approaches to limiting user bias when selecting parameter values and evaluating the relative weights among astrometric parameters. EnLink adopts a locally adaptive distance metric and eliminates the need for parameter tuning through automation. The original SNN relies only on human input for parameter tuning so we modified SNN to run in two stages. We first ran the original SNN 7000 times, each with a randomly generated sample according to within-source co-variance matrices provided in Gaia DR2 and random parameter values within reasonable ranges. During the second stage, we modified SNN to identify the most repeating stellar groups from the 25 798 we obtained in the first stage. We recovered 22 spatially and kinematically coherent groups in the Orion complex, 12 of which were previously unknown. The groups show a wide distribution of distances extending as far as about 150 pc in front of the star-forming Orion molecular clouds, to about 50 pc beyond them, where we, unexpectedly, find several groups. Our results reveal the wealth of sub-structure in the OB association, within and beyond the classical Blaauw Orion OBI sub-groups. A full characterization of the new groups is essential as it offers the potential to unveil how star formation proceeds globally in large complexes such as Orion.

Place, publisher, year, edition, pages
2020. Vol. 643, article id A114
Keywords [en]
proper motions, parallaxes, astrometry, methods: data analysis, stars: kinematics and dynamics, stars: formation
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-188742DOI: 10.1051/0004-6361/201935955ISI: 000594768000003OAI: oai:DiVA.org:su-188742DiVA, id: diva2:1519156
Available from: 2021-01-18 Created: 2021-01-18 Last updated: 2022-02-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Adamo, Angela

Search in DiVA

By author/editor
Adamo, Angela
By organisation
The Oskar Klein Centre for Cosmo Particle Physics (OKC)Department of Astronomy
In the same journal
Astronomy and Astrophysics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 14 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf