Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Molecular insight into wetting behavior of deep eutectic solvent droplets on ionic substrates: A molecular dynamics study
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Nanjing Tech University, P. R. China; Petru Poni Institute of Macromolecular Chemistry, Romania.
Show others and affiliations
Number of Authors: 72020 (English)In: Journal of Molecular Liquids, ISSN 0167-7322, E-ISSN 1873-3166, Vol. 319, article id 114298Article in journal (Refereed) Published
Abstract [en]

Wetting behavior of droplets made of choline chloride/urea (1:2), an archetypal deep eutectic solvent mixture, is studied using molecular dynamics simulations. The droplets are placed on a smooth model ionic substrate with positive and negative charges of the same magnitude q (0 e <= q <= 1.0 e), corresponding to a step-by-step change from a hydrophobic to hydrophilic surface. The molecular microstructure of the droplets and their spatial compositions are systematically studied in details on how they both change while gradually moving from hydrophobic to hydrophilic surface. It is observed that urea initially forms a monolayer on the surface with a planar orientation. This layer slowly shrinks while it becomes laterally more and more constrained. It becomes also molecularly more ordered when the surface becomes hydrophilic, at the same time as the contact angles become larger and larger. The anions (Cl-) are continuously pushed further away from the charged surface. While the contact angle increases and wetting decreases, and urea forms even a secondary stable layer where it changes its orientation and turns to have one of its amines facing up and carbonyl down. The average number of ureaurea H-bonds decreases linearly while the number of ion-pair contacts increases when the urea molecules are separating from the mixture. Our analysis gives a clear molecular understanding of the process and can be useful in many applications from membrane separation to catalysis.

Place, publisher, year, edition, pages
2020. Vol. 319, article id 114298
Keywords [en]
Deep eutectic solvents, Solid/fluid interface, Wetting, Adsorbed layer, Molecular simulation
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-189210DOI: 10.1016/j.molliq.2020.114298ISI: 000583948500010OAI: oai:DiVA.org:su-189210DiVA, id: diva2:1519267
Available from: 2021-01-18 Created: 2021-01-18 Last updated: 2022-02-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Laaksonen, Aatto

Search in DiVA

By author/editor
Laaksonen, Aatto
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Journal of Molecular Liquids
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf