Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The effect of optic flow cues on honeybee flight control in wind
Stockholm University, Faculty of Science, Department of Zoology.ORCID iD: 0000-0003-3625-3897
Number of Authors: 32021 (English)In: Proceedings of the Royal Society of London. Biological Sciences, ISSN 0962-8452, E-ISSN 1471-2954, Vol. 288, no 1943, article id 20203051Article in journal (Refereed) Published
Abstract [en]

To minimize the risk of colliding with the ground or other obstacles, flying animals need to control both their ground speed and ground height. This task is particularly challenging in wind, where head winds require an animal to increase its airspeed to maintain a constant ground speed and tail winds may generate negative airspeeds, rendering flight more difficult to control. In this study, we investigate how head and tail winds affect flight control in the honeybee Apis mellifera, which is known to rely on the pattern of visual motion generated across the eye-known as optic flow-to maintain constant ground speeds and heights. We find that, when provided with both longitudinal and transverse optic flow cues (in or perpendicular to the direction of flight, respectively), honeybees maintain a constant ground speed but fly lower in head winds and higher in tail winds, a response that is also observed when longitudinal optic flow cues are minimized. When the transverse component of optic flow is minimized, or when all optic flow cues are minimized, the effect of wind on ground height is abolished. We propose that the regular sidewards oscillations that the bees make as they fly may be used to extract information about the distance to the ground, independently of the longitudinal optic flow that they use for ground speed control. This computationally simple strategy could have potential uses in the development of lightweight and robust systems for guiding autonomous flying vehicles in natural environments.

Place, publisher, year, edition, pages
2021. Vol. 288, no 1943, article id 20203051
Keywords [en]
optic flow, bee, flight, wind, speed, height
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-191336DOI: 10.1098/rspb.2020.3051ISI: 000613510700014PubMedID: 33468001OAI: oai:DiVA.org:su-191336DiVA, id: diva2:1537607
Available from: 2021-03-16 Created: 2021-03-16 Last updated: 2022-02-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Baird, Emily

Search in DiVA

By author/editor
Baird, Emily
By organisation
Department of Zoology
In the same journal
Proceedings of the Royal Society of London. Biological Sciences
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf