Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Searches for neutrinos from cosmic-ray interactions in the Sun using seven years of IceCube data
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Faculty of Science, Department of Physics.
Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Faculty of Science, Department of Physics.
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Show others and affiliations
Number of Authors: 3562021 (English)In: Journal of Cosmology and Astroparticle Physics, E-ISSN 1475-7516, Vol. 2021, no 02, article id 025Article in journal (Refereed) Published
Abstract [en]

Cosmic-ray interactions with the solar atmosphere are expected to produce particle showers which in turn produce neutrinos from weak decays of mesons. These solar atmospheric neutrinos (SAνs) have never been observed experimentally. A detection would be an important step in understanding cosmic-ray propagation in the inner solar system and the dynamics of solar magnetic fields. SAνs also represent an irreducible background to solar dark matter searches and a detection would allow precise characterization of this background. Here, we present the first experimental search based on seven years of data collected from May 2010 to May 2017 in the austral winter with the IceCube Neutrino Observatory. An unbinned likelihood analysis is performed for events reconstructed within 5 degrees of the center of the Sun. No evidence for a SAν flux is observed. After inclusion of systematic uncertainties, we set a 90% upper limit of 1.02+0.20−0.1810−13 GeV−1cm−2s−1 at 1 TeV.

Place, publisher, year, edition, pages
2021. Vol. 2021, no 02, article id 025
Keywords [en]
neutrino astronomy, neutrino detectors, neutrino experiments, solar and atmospheric neutrinos
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-191800DOI: 10.1088/1475-7516/2021/02/025ISI: 000620675500025Scopus ID: 2-s2.0-85101592689OAI: oai:DiVA.org:su-191800DiVA, id: diva2:1547515
Available from: 2021-04-27 Created: 2021-04-27 Last updated: 2023-03-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopusarXiv:1912.13135

Authority records

Ahrens, MaryonBohm, ChristianDeoskar, KunalFinley, ChadHultqvist, KlasO'Sullivan, ErinWalck, Christian

Search in DiVA

By author/editor
Ahrens, MaryonBohm, ChristianDeoskar, KunalFinley, ChadHultqvist, KlasO'Sullivan, ErinWalck, Christian
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Journal of Cosmology and Astroparticle Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 32 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf