Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
"Mix-Then-On-Demand-Complex": In Situ Cascade Anionization and Complexation of Graphene Oxide for High-Performance Nanofiltration Membranes
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Beijing University of Technology, P. R. China.
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Show others and affiliations
Number of Authors: 112021 (English)In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 15, no 3, p. 4440-4449Article in journal (Refereed) Published
Abstract [en]

Assembling two-dimensional (2D) materials by polyelectrolyte often suffers from inhomogeneous microstructures due to the conventional mixing-and-simultaneous-complexation procedure (mix-and-complex) in aqueous solution. Herein a mix-then-on-demand-complex concept via on-demand in situ cascade anionization and ionic complexation of 2D materials is raised that drastically improves structural order in 2D assemblies, as exemplified by classical graphene oxide (GO)-based ultrathin membranes. Specifically, in dimethyl sulfoxide, the carboxylic acid-functionalized GO sheets (COOH-GOs) were mixed evenly with a cationic poly(ionic liquid) (PIL) and upon filtration formed a well-ordered layered composite membrane with homogeneous distribution of PIL chains in it; next, whenever needed, it was alkali-treated to convert COOH-GO in situ into its anionized state COO--GO that immediately complexed ionically with the surrounding cationic PIL chains. This mix-then-on-demand-complex concept separates the ionic complexation of GO and polyelectrolytes from their mixing step. By synergistically combining the PIL-induced hydrophobic confinement effect and supramolecular interactions, the as-fabricated nanofiltration membranes carry interface transport nanochannels between GO and PIL, reaching a high water permeability of 96.38 L m(-2) h(-1) bar(-1) at a maintained excellent dye rejection 99.79% for 150 h, exceeding the state-of-the-art GO-based hybrid membranes. The molecular dynamics simulations support the experimental data, confirming the interface spacing between GO and PIL as the water transport channels.

Place, publisher, year, edition, pages
2021. Vol. 15, no 3, p. 4440-4449
Keywords [en]
graphene oxide, ionic complexation, nanofiltration, poly(ionic liquid), confinement effect
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-193603DOI: 10.1021/acsnano.0c08308ISI: 000634569100062PubMedID: 33587595OAI: oai:DiVA.org:su-193603DiVA, id: diva2:1559683
Available from: 2021-06-02 Created: 2021-06-02 Last updated: 2023-06-16Bibliographically approved
In thesis
1. Processing 2D nanomaterials into inorganic-polymer composite films and fibers with well-defined properties
Open this publication in new window or tab >>Processing 2D nanomaterials into inorganic-polymer composite films and fibers with well-defined properties
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

2D materials such as graphene, graphene oxide (GO), reduced graphene oxide (rGO) and MXene, possess unique properties, e.g., high carrier mobilities, mechanical flexibility, good thermal conductivity, and high optical and UV adsorption. They are potentially applicable in the fields of electronics, optoelectronics, catalysts, energy storage facilities, sensors, solar cells, lithium batteries, and so on. Normally, weak interactions and irregular packing or stacking of 2D layers may adversely offset or weaken to some extent their 2D effects such as mechanical and electrical properties at a macroscale. In this regard, it is required to spatially organize 2D materials into macroscopic forms of a well-defined shape (e.g. fibers, films, or 3D structures) in a way that can simultaneously preserve favorable 2D properties and functions shown at the nanoscale, and facilitate their compatibility with the state-of-the-art industrial processes. In my thesis, different types of 2D materials, here GO, rGO and MXene together with polymers were rationally assembled into functional composite materials. The synergistic molecular crosslinking strategy was utilized and controlled in such composite materials for the sake of better performance. My thesis mainly involves four parts:

 

(1) Tough and strong GO composite films via a polycationitrile approach. The interface between GO nanosheets was reinforced via an intermolecular covalent crosslinking approach called “polycationitrile chemistry”. As a result, the mechanical performance of the as-prepared GO-based composite films was enhanced and maintained even at an extremely high relative humidity of 98%.

(2) rGO-poly(ionic liquid) (PIL) composite films with high mechanical performance. The rGO/PIL composite films were designed and fabricated, where the synergistic supramolecular interactions between PIL and rGO layer enable high electrical conductivity and favorable mechanical properties.

(3) Regenerated cellulose (RC)/MXene composite nanofibers for personal heating management. I harnessed a biodegradable RC-based fibrous matrix to bond with inorganic MXene nanoflakes via electrospinning method. Via hybridization, the as-formed RC/MXene nanofibers present a promotion of mechanical performance and photothermal conversion capability. As a personal heating cloth, it realizes energy-saving outdoor thermoregulatory.

(4) RC/MXene solar absorber for solar-driven interfacial water evaporation. The RC/MXene composite nanofibers integrate considerable merits of excellent mechanical performance, wettability, and fast steam generation rate. The RC/MXene solar absorber offers significant values for the practical application of solar-driven steam generation.

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry, Stockholm University, 2023. p. 59
Keywords
2D materials, advanced composite materials, crosslinking chemistry, high mechanical performance, solar heating, personalized thermoregulation, solar-driven water evaporation
National Category
Materials Chemistry
Research subject
Materials Chemistry
Identifiers
urn:nbn:se:su:diva-218177 (URN)978-91-8014-398-1 (ISBN)978-91-8014-399-8 (ISBN)
Public defence
2023-09-13, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B and online via Zoom, public link is available at the department website, Stockholm, 14:30 (English)
Opponent
Supervisors
Available from: 2023-08-21 Created: 2023-06-16 Last updated: 2023-08-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Chang, JianHe, HongyanKheirabad, Atefeh KhorsandZhang, MiaoYuan, Jiayin

Search in DiVA

By author/editor
Wang, YanleiChang, JianHe, HongyanKheirabad, Atefeh KhorsandZhang, MiaoYuan, Jiayin
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
ACS Nano
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 55 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf