Perturbation theory alone fails to describe thermodynamics of the electroweak phase transition. We review a technique combining perturbative and non-perturbative methods to overcome this challenge. Accordingly, the principal theme is a tutorial of high-temperature dimensional reduction. We present an explicit derivation with a real singlet scalar and compute the thermal effective potential at two-loop order. In particular, we detail the dimensional reduction for a real-singlet extended Standard Model. The resulting effective theory will impact future non-perturbative studies based on lattice simulations as well as purely perturbative investigations.