Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Anthropogenic depletion of Iran's aquifers
Show others and affiliations
Number of Authors: 102021 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 118, no 25, article id e2024221118Article in journal (Refereed) Published
Abstract [en]

Global groundwater assessments rank Iran among countries with the highest groundwater depletion rate using coarse spatial scales that hinder detection of regional imbalances between renewable groundwater supply and human withdrawals. Herein, we use in situ data from 12,230 piezometers, 14,856 observation wells, and groundwater extraction points to provide ground-based evidence about Iran’s widespread groundwater depletion and salinity problems. While the number of groundwater extraction points increased by 84.9% from 546,000 in 2002 to over a million in 2015, the annual groundwater withdrawal decreased by 18% (from 74.6 to 61.3 km3/y) primarily due to physical limits to fresh groundwater resources (i.e., depletion and/or salinization). On average, withdrawing 5.4 km3/y of nonrenewable water caused groundwater tables to decline 10 to 100 cm/y in different regions, averaging 49 cm/y across the country. This caused elevated annual average electrical conductivity (EC) of groundwater in vast arid/semiarid areas of central and eastern Iran (16 out of 30 subbasins), indicating “very high salinity hazard” for irrigation water. The annual average EC values were generally lower in the wetter northern and western regions, where groundwater EC improvements were detected in rare cases. Our results based on high-resolution groundwater measurements reveal alarming water security threats associated with declining fresh groundwater quantity and quality due to many years of unsustainable use. Our analysis offers insights into the environmental implications and limitations of water-intensive development plans that other water-scarce countries might adopt.

Place, publisher, year, edition, pages
2021. Vol. 118, no 25, article id e2024221118
Keywords [en]
groundwater depletion, salinity, water resources management, water quality
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-196186DOI: 10.1073/pnas.2024221118ISI: 000665806600006PubMedID: 34161268OAI: oai:DiVA.org:su-196186DiVA, id: diva2:1591762
Available from: 2021-09-07 Created: 2021-09-07 Last updated: 2025-02-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Bhattarai, RabinMadani, Kaveh

Search in DiVA

By author/editor
Bhattarai, RabinNoury, MojtabaMadani, Kaveh
By organisation
Department of Physical Geography
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 20 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf