Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Transformation of organic micropollutants along hyporheic flow in bedforms of river-simulating flumes
Stockholm University, Faculty of Science, Department of Environmental Science.
Show others and affiliations
Number of Authors: 142021 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 11, no 1, article id 13034Article in journal (Refereed) Published
Abstract [en]

Urban streams receive increasing loads of organic micropollutants from treated wastewaters. A comprehensive understanding of the in-stream fate of micropollutants is thus of high interest for water quality management. Bedforms induce pumping effects considerably contributing to whole stream hyporheic exchange and are hotspots of biogeochemical turnover processes. However, little is known about the transformation of micropollutants in such structures. In the present study, we set up recirculating flumes to examine the transformation of a set of micropollutants along single flowpaths in two triangular bedforms. We sampled porewater from four locations in the bedforms over 78 days and analysed the resulting concentration curves using the results of a hydrodynamic model in combination with a reactive transport model accounting for advection, dispersion, first-order removal and retardation. The four porewater sampling locations were positioned on individual flowpaths with median solute travel times ranging from 11.5 to 43.3 h as shown in a hydrodynamic model previously. Highest stability was estimated for hydrochlorothiazide on all flowpaths. Lowest detectable half-lives were estimated for sotalol (0.7 h) and sitagliptin (0.2 h) along the shortest flowpath. Also, venlafaxine, acesulfame, bezafibrate, irbesartan, valsartan, ibuprofen and naproxen displayed lower half-lives at shorter flowpaths in the first bedform. However, the behavior of many compounds in the second bedform deviated from expectations, where particularly transformation products, e.g. valsartan acid, showed high concentrations. Flowpath-specific behavior as observed for metformin or flume-specific behavior as observed for metoprolol acid, for instance, was attributed to potential small-scale or flume-scale heterogeneity of microbial community compositions, respectively. The results of the study indicate that the shallow hyporheic flow field and the small-scale heterogeneity of the microbial community are major controlling factors for the transformation of relevant micropollutants in river sediments.

Place, publisher, year, edition, pages
2021. Vol. 11, no 1, article id 13034
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-196524DOI: 10.1038/s41598-021-91519-2ISI: 000667447800015PubMedID: 34158517OAI: oai:DiVA.org:su-196524DiVA, id: diva2:1591980
Available from: 2021-09-07 Created: 2021-09-07 Last updated: 2025-02-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Posselt, MalteColl, ClaudiaHorn, Marcus A.

Search in DiVA

By author/editor
Posselt, MalteColl, ClaudiaHorn, Marcus A.
By organisation
Department of Environmental Science
In the same journal
Scientific Reports
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 22 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf