Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exploring the validity of the Stokes-Einstein relation in supercooled water using nanomolecular probes
Stockholm University, Faculty of Science, Department of Physics.ORCID iD: 0000-0001-5754-9334
Stockholm University, Faculty of Science, Department of Physics.ORCID iD: 0000-0001-9863-9811
Number of Authors: 22021 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 23, no 45, p. 25490-25499Article in journal (Refereed) Published
Abstract [en]

The breakdown of Stokes–Einstein relation in liquid water is one of the many anomalies that take place upon cooling and indicates the decoupling of diffusion and viscosity. It is hypothesized that these anomalies manifest due to the appearance of nanometer-scale spatial fluctuations, which become increasingly pronounced in the supercooled regime. Here, we explore the validity of the Stokes–Einstein relation in supercooled water using nanomolecular probes. We capture the diffusive dynamics of the probes using dynamic light scattering and target dynamics at different length scales by varying the probe size, from ≈100 nm silica spheres to molecular-sized polyhydroxylated fullerenes (≈1 nm). We find that all the studied probes, independent of size, display similar diffusive dynamics with an Arrhenius activation energy of ≈23 kJ mol−1. Analysis of the diffusion coefficient further indicates that the probes, independent of their size, experience similar dynamic environment, which coincides with the macroscopic viscosity, while single water molecules effectively experience a comparatively lower viscosity. Finally, we conclude that our results indicate that the Stokes–Einstein relation is preserved for diffusion of probes in supercooled water T ≥ 260 K with size as small as ≈1 nm.

Place, publisher, year, edition, pages
2021. Vol. 23, no 45, p. 25490-25499
National Category
Chemical Sciences Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-198251DOI: 10.1039/d1cp02866aISI: 000693674000001PubMedID: 34494639OAI: oai:DiVA.org:su-198251DiVA, id: diva2:1607796
Available from: 2021-11-02 Created: 2021-11-02 Last updated: 2023-10-23Bibliographically approved
In thesis
1. The Role of Molecular Heterogeneity in the Structural Dynamics of Aqueous Solutions
Open this publication in new window or tab >>The Role of Molecular Heterogeneity in the Structural Dynamics of Aqueous Solutions
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The liquid-liquid critical point hypothesis suggests that liquid water exists in two liquid states with different local structures, so-called high- and low-density liquid (HDL, LDL). At ambient pressure water locally fluctuates between these two states, with the fluctuations becoming more pronounced as the liquid is supercooled. In this thesis, we explore the role of molecular heterogeneity in the structural dynamics of aqueous solutions, specifically investigating the interplay of different solutes in water with the hypothesized HDL-LDL fluctuations. In our experimental approach, we utilize coherent light and X-ray scattering techniques, including small- and wide-angle X-ray scattering (SAXS, WAXS), as well as correlation methods, such as dynamic light scattering (DLS) and X-ray photon correlation spectroscopy (XPCS), that enable us to probe structural dynamics at a broad range of length and time scales. 

Using DLS, we measure the diffusive dynamic behaviour of differently sized nanomolecular probes in supercooled water, finding that it is effectively similar and independent of probe size down to molecular scales of ≈1 nm. In contrast to single water molecules, these probes experience a similar dynamic environment, which coincides with the bulk viscosity. These results could suggest that anomalous influence from the hypothesized water fluctuations becomes apparent first on sub-nm length scales. Furthermore, we explore how the presence of small polar-organic solutes modulates the water phase diagram, utilizing glycerol-water solutions as a model system. By outrunning freezing with the rapid evaporative cooling technique, combined with ultrafast X-ray scattering at X-ray free-electron lasers (XFELs), we are able to probe the liquid structure in deeply supercooled dilute glycerol-water solutions. Our findings indicate the existence of HDL- and LDL-like fluctuations upon supercooling, with a Widom line shifted to slightly lower temperatures compared to pure water. Further experiments on deeply supercooled glycerol-water solutions at intermediate glycerol concentrations, combining WAXS and SAXS/XPCS, provide additional insights. These results reveal a first-order-like liquid-liquid transition involving discontinuous changes in the inter-atomic liquid structure and nanoscale liquid dynamics, which precedes ice crystallization. 

Lastly, with the aim of developing powerful tools for resolving dynamics within spatially heterogeneous systems, including aqueous solutions, we combine the spatial resolution of nanofocused coherent X-ray beams with dynamic measurements by XPCS. Here, we successfully demonstrate a first proof-of-concept experiment of so-called nanofocused XPCS at MAX IV synchrotron radiation facility. In future experiments, we plan to go beyond standard XPCS at synchrotrons, towards accessing ultrafast atomic-scale liquid dynamics by X-ray speckle visibility spectroscopy (XSVS) at XFELs.

Place, publisher, year, edition, pages
Stockholm: Department of Physics, Stockholm University, 2023
Keywords
Water, Aqueous solutions, X-ray scattering, X-ray photon correlation spectroscopy, Dynamic light scattering
National Category
Physical Sciences Condensed Matter Physics Physical Chemistry
Research subject
Chemical Physics
Identifiers
urn:nbn:se:su:diva-222749 (URN)978-91-8014-571-8 (ISBN)978-91-8014-572-5 (ISBN)
Public defence
2023-12-07, sal FB52, AlbaNova universitetscentrum, Roslagstullsbacken 21, Stockholm, 13:00 (English)
Opponent
Supervisors
Available from: 2023-11-14 Created: 2023-10-23 Last updated: 2023-11-02Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Berkowicz, SharonPerakis, Fivos

Search in DiVA

By author/editor
Berkowicz, SharonPerakis, Fivos
By organisation
Department of Physics
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Chemical SciencesPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 90 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf