Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electrochemically driven efficient enzymatic conversion of CO2 to formic acid with artificial cofactors
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Luleå University of Technology, Sweden; Romanian Academy Petru Poni (PP) Institute of Macromolecular Chemistry, Romania; Nanjing Tech University, China.
Show others and affiliations
Number of Authors: 62021 (English)In: Journal of CO2 Utilization, ISSN 2212-9820, E-ISSN 2212-9839, Vol. 52, article id 101679Article in journal (Refereed) Published
Abstract [en]

Enzymatic reduction of CO2 to formic acid with the enzyme formate dehydrogenase (FDH) and a cofactor is a promising method for CO2 conversion and utilization. However, the natural cofactor nicotinamide adenine dinucleotide (NADH) shows some drawbacks such as a low reduction efficiency and forms isomers or dimers (1,6 - NADH or NAD dimer) in the regeneration reaction. To overcome them and to improve the production of formic acid, in this work, the artificial cofactors, i.e., the bipyridinium-based salts of methyl viologen (MV2+), 1,1’-dicarboxymethyl-4,4’-bipyridinium bromine (DC2+), and 1,1’-diaminoethyl-4,4’-bipyridinium bromine (DA2+), were used to replace NADH, and the effect of different functional groups on the electrochemical regeneration and catalytic performance in the enzymatic reaction was studied systematically. Also, studies using the natural cofactor NADH were carried out for comparison. It was found that the cofactor with amino groups showed the highest catalytic efficiency (kcat/Km) of 0.161 mM-1min-1, which is 536 times higher than that of the natural cofactor NADH. Molecular Dynamics simulations were conducted to give further molecular insight into the behavior of the cofactors. Analyzing the free energy profiles of the complexes between CO2 in the FDH active site with different artificial cofactors indicated that the artificial cofactor with the amino groups had the highest affinity for CO2, being consistent with the experimental observations.

Place, publisher, year, edition, pages
2021. Vol. 52, article id 101679
Keywords [en]
CO2 conversion, Formic acid, Enzyme, Artificial cofactors, Electrocatalysis, Umbrella sampling, Molecular dynamics
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-198521DOI: 10.1016/j.jcou.2021.101679ISI: 000701782400006OAI: oai:DiVA.org:su-198521DiVA, id: diva2:1610493
Available from: 2021-11-11 Created: 2021-11-11 Last updated: 2022-02-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Laaksonen, Aatto

Search in DiVA

By author/editor
Laaksonen, Aatto
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Journal of CO2 Utilization
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 30 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf