Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Plate-Based Respirometry to Assess Thermal Sensitivity of Zebrafish Embryo Bioenergetics in situ
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Number of Authors: 22021 (English)In: Frontiers in Physiology, E-ISSN 1664-042X, Vol. 12, article id 746367Article in journal (Refereed) Published
Abstract [en]

Oxygen consumption allows measuring the metabolic activity of organisms. Here, we adopted the multi-well plate-based respirometry of the extracellular flux analyzer (Seahorse XF96) to investigate the effect of temperature on the bioenergetics of zebrafish embryos (Danio rerio) in situ. We show that the removal of the embryonic chorion is beneficial for oxygen consumption rates (OCR) and penetration of various mitochondrial inhibitors, and confirm that sedation reduces the variability of OCR. At 48h post-fertilization, embryos (maintained at a routine temperature of 28°C) were exposed to different medium temperatures ranging from 18°C to 37°C for 20h prior OCR measurement. Measurement temperatures from 18°C to 45°C in the XF96 were achieved by lowering the room temperature and active in-built heating. At 18°C assay temperature, basal OCR was low due to decreased ATP-linked respiration, which was not limited by mitochondrial power, as seen in substantial spare respiratory capacity. Basal OCR of the embryos increased with assay temperature and were stable up to 37°C assay temperature, with pre-exposure of 37°C resulting in more thermo-resistant basal OCR measured at 41°C. Adverse effects of the mitochondrial inhibitor oligomycin were seen at 37°C and chemical uncouplers disrupted substrate oxidation gradually with increasing assay temperature. Proton leak respiration increased at assay temperatures above 28°C and compromised the efficiency of ATP production, calculated as coupling efficiency. Thus, temperature impacts mitochondrial respiration by reduced cellular ATP turnover at lower temperatures and by increased proton leak at higher temperatures. This conclusion is coherent with the assessment of heart rate, an independent indicator of systemic metabolic rate, which increased with exposure temperature, peaking at 28°C, and decreased at higher temperatures. Collectively, plate-based respirometry allows assessing distinct parts of mitochondrial energy transduction in zebrafish embryos and investigating the effect of temperature and temperature acclimation on mitochondrial bioenergetics in situ.

Place, publisher, year, edition, pages
2021. Vol. 12, article id 746367
Keywords [en]
extracellular flux, zebrafish, embryo, oxygen consumption, temperature, proton leak, mitochondria
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-198694DOI: 10.3389/fphys.2021.746367ISI: 000703695200001PubMedID: 34621190OAI: oai:DiVA.org:su-198694DiVA, id: diva2:1611444
Available from: 2021-11-15 Created: 2021-11-15 Last updated: 2024-01-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Rollwitz, ErikJastroch, Martin

Search in DiVA

By author/editor
Rollwitz, ErikJastroch, Martin
By organisation
Department of Molecular Biosciences, The Wenner-Gren Institute
In the same journal
Frontiers in Physiology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 49 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf