Change search
ReferencesLink to record
Permanent link

Direct link
Modelling the spread of penicillin-resistant Streptococcus pneumoniae in day-care and evaluation of intervention.
Stockholm University, Faculty of Science, Department of Mathematics. Matematisk statistik.
Show others and affiliations
2005 (English)In: Statistics in Medicine, ISSN 0277-6715, Vol. 24, no 23, 3593-607 p.Article in journal (Refereed) Published
Abstract [en]

In 1995, a disease control and intervention project was initiated in Malmöhus county in southern Sweden to limit the spread of penicillin-resistant pneumococci. Since most of the carriers of pneumococci are preschool children, and since most of the spread is believed to take place in day-care, a mathematical model, in the form of a stochastic process, for the spread in a day-care group was constructed. Effects of seasonal variation and size of the day-care group were particularly considered. The model was then used for comparing results from computer simulations without and with intervention. Results indicate that intervention is highly effective in day-care groups with more than ten children during the second half of the year.

Place, publisher, year, edition, pages
2005. Vol. 24, no 23, 3593-607 p.
Keyword [en]
Biometry, Child Day Care Centers, Child; Preschool, Computer Simulation, Disease Outbreaks/prevention & control/statistics & numerical data, Humans, Likelihood Functions, Models; Statistical, Penicillin Resistance, Pneumococcal Infections/epidemiology/prevention & control/*transmission, Seasons, Stochastic Processes, Streptococcus pneumoniae/drug effects, Sweden/epidemiology
National Category
Probability Theory and Statistics
URN: urn:nbn:se:su:diva-10455PubMedID: 16025551OAI: diva2:176974
Available from: 2008-01-02 Created: 2008-01-02 Last updated: 2011-01-12Bibliographically approved

Open Access in DiVA

No full text

Other links


Search in DiVA

By author/editor
Andersson, Mikael
By organisation
Department of Mathematics
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 59 hits
ReferencesLink to record
Permanent link

Direct link