Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Doping-induced change in the interlayer yransport mechanism of Bi2Sr2CaCu2O8+δ near the superconducting transition temperature
Stockholm University, Faculty of Science, Department of Physics. (kondmat)
Stockholm University, Faculty of Science, Department of Physics. (kondmat)
Stockholm University, Faculty of Science, Department of Physics. (kondmat)
2008 (English)In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 101, no 8, 087003- p.Article in journal (Refereed) Published
Abstract [en]

We perform a detailed study of temperature, bias, and doping dependence of interlayer transport in the layered high temperature superconductor Bi2Sr2CaCu2O8+delta. We observe that the shape of interlayer characteristics in underdoped crystals exhibits a remarkable crossover at the superconducting transition temperature: from thermal activation-type above Tc to almost T-independent quantum tunneling-type below Tc. Our data provide insight into the nature of interlayer transport and indicate that its mechanism changes with doping: from the conventional single quasiparticle tunneling in overdoped to a progressively increasing Cooper pair contribution in underdoped crystals.

Place, publisher, year, edition, pages
2008. Vol. 101, no 8, 087003- p.
National Category
Physical Sciences
Research subject
Physics
Identifiers
URN: urn:nbn:se:su:diva-14611DOI: 10.1103/PhysRevLett.101.087003ISI: 000258643600060PubMedID: 18764651OAI: oai:DiVA.org:su-14611DiVA: diva2:181131
Available from: 2008-10-13 Created: 2008-10-13 Last updated: 2017-12-13Bibliographically approved
In thesis
1. Properties of small Bi2Sr2CaCu2O8 intrinsic Josephson junctions: confinement, flux-flow and resonant phenomena
Open this publication in new window or tab >>Properties of small Bi2Sr2CaCu2O8 intrinsic Josephson junctions: confinement, flux-flow and resonant phenomena
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, intrinsic Josephson junctions, naturally formed in the strongly anisotropic high-temperature superconductor Bi2Sr2CaCu2O8 (Bi-2212), are studied experimentally. For this purpose, small mesa structures are fabricated on the surface of single crystals using micro- and nano-fabrication tools, focused ion beam is used to reduce the area of the mesa-structures down to ≈ 1 × 1 μm2.

The properties of charge transport across copper-oxide layers inside the mesas are studied by intrinsic tunneling spectroscopy. Temperature, bias and magnetic field dependences of current-voltage characteristics are examined.

In the main part of the thesis, the behavior of intrinsic Josephson junctions in magnetic fields B parallel to the copper-oxide planes is studied. Parallel magnetic fields penetrate the junctions in the form of Josephson vortices (fluxons). At high magnetic fields, fluxons are arranged in a regular lattice and are accelerated by a sufficient high transport current. As the fluxon lattice is moving through the mesa, it emits electromagnetic waves in the important THz frequency range. Properties of Bi-2212 mesas in this flux-flow regime are studied in this thesis.

The following new observations were made during the course of this work: a crossover from thermal activation above Tc to quantum tunneling below Tc is seen in the interlayer transport-mechanism, the Fraunhofer pattern of Ic(B) is observed clearly in Bi-2212, superluminal electromagnetic cavity resonances and phonon-polaritons are observed in Bi-2212.

It is argued that the employed technique for miniaturization of mesas and the obtained results can be useful for a better understanding of fundamental properties of high-temperature superconductors and for the realizations of coherent flux-flow oscillators and coherent phonon-polariton generators in the important THz frequency range.

Place, publisher, year, edition, pages
Stockholm: Department of Physics, Stockholm University, 2011. 105 p.
Keyword
high-temperature superconductivity, intrinsic Josephson junctions, tunneling, fluxons, flux-flow oscillator, THz-emission, cavity resonances, polaritons, micro/nano-fabrication
National Category
Condensed Matter Physics
Research subject
Physics
Identifiers
urn:nbn:se:su:diva-62583 (URN)978-91-7447-358-2 (ISBN)
Public defence
2011-10-27, FB41, AlbaNova universitetscentrum, Roslagstullsbacken 21, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 6: Manuscript. Available from: 2011-10-05 Created: 2011-09-23 Last updated: 2011-10-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Katterwe, Sven-OlofRydh, AndreasKrasnov, Vladimir M.
By organisation
Department of Physics
In the same journal
Physical Review Letters
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 69 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf